Specializations of Jordan superalgebras

C. Martínez and E. Zelmanov

Abstract. We construct universal associative enveloping algebras for a large class of Jordan superalgebras.

1. Introduction

Let \(F \) be a ground field of characteristic \(\neq 2 \). A (linear) Jordan algebra is a vector space \(J \) with a binary bilinear operation \((x, y) \mapsto xy \) satisfying the following identities:

\begin{align*}
(J1) & \quad xy = yx \\
(J2) & \quad (x^2y)x = x^3(yx)
\end{align*}

For an element \(x \in J \) let \(R(x) \) denote the right multiplication \(R(x) : a \mapsto ax \) in \(J \). If \(x, y, z \in J \) then by \(\{x, y, z\} \) we denote their Jordan triple product \(\{xy, z\} = (xy)z + x(yz) - y(xz) \).

A Jordan algebra \(J \) is called special if it is embeddable into an algebra of type \(A^{(\pm)} \), where \(A \) is an associative algebra. The algebra \(H_3(\mathbb{O}) \) is exceptional. A homomorphism \(J \to A^{(\pm)} \) is called a specialization of a Jordan algebra \(J \). N. Jacobson [3] introduced the notion of a universal associative enveloping algebra \(U = U(J) \) of a Jordan algebra \(J \) and showed that the category of specializations of \(J \) is equivalent to the category of homomorphisms of the associative algebra \(U(J) \).

Let \(V \) be a Jordan bimodule over the algebra \(J \) (see [3]). We call \(V \) a one-sided bimodule if \(\{J, V, J\} = (0) \). In this case, the mapping \(\alpha \mapsto 2R_{\alpha} \in \text{End}_F V \) is a specialization. The category of one-sided bimodules over \(J \) is equivalent to the category of right (left) \(U(J) \)-modules.

In this paper we study specializations and one-sided bimodules of Jordan superalgebras. Let us introduce the definitions.

By a superalgebra we mean a \(\mathbb{Z}/2\mathbb{Z} \)-graded algebra \(A = A_\sigma + A_\tau \). We define \([\alpha] = 0 \) if \(\alpha \in A_\sigma \) and \([\alpha] = 1 \) if \(\alpha \in A_\tau \).
For instance, if V is a vector space of countable dimension, and $G(V) = G(V)_\mathbb{R} + G(V)_\mathbb{I}$ is the Grassmann algebra over V, that is, the quotient of the tensor algebra over the ideal generated by the symmetric tensors, then $G(V)$ is a superalgebra. Its even part is the linear span of all products of even length and the odd part is the linear span of all products of odd length.

If A is a superalgebra, its Grassmann enveloping algebra is the subalgebra of $A \otimes G(V)$ given by $G(A) = A_\mathbb{R} \otimes G(V)_\mathbb{R} + A_\mathbb{I} \otimes G(V)_\mathbb{I}$.

Let \mathcal{V} be a homogeneous variety of algebras, that is, a class of F-algebras satisfying a certain set of homogeneous identities and all their partial linearizations (see [20]).

Definition 1 A superalgebra $A = A_\mathbb{R} + A_\mathbb{I}$ is called a \mathcal{V} superalgebra if $G(A) \in \mathcal{V}$.

C. T. C. Wall [19] showed that every simple finite-dimensional associative superalgebra over an algebraically closed field F is isomorphic to the superalgebra

$$M_{m,n}(F) = \left\{ \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}, A \in M_m(F), D \in M_n(F) \right\} + \left\{ \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}, B \in M_{m\times n}(F), C \in M_{n\times m}(F) \right\}$$

or to the superalgebra

$$P(n) = \left\{ \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}, A \in M_n(F) \right\} + \left\{ \begin{pmatrix} 0 & B \\ B & 0 \end{pmatrix}, B \in M_n(F) \right\}.$$
6) The 3-dimensional Kaplansky superalgebra, \(K_3 = Fe + (Fx + Fy) \), with the multiplication \(e^2 = e, \quad ex = \frac{1}{2}x, \quad ey = \frac{1}{2}y, \quad [x,y] = e \).

7) The 1-parametric family of 4-dimensional superalgebras \(D_t \) is defined as \(D_t = (Fe_1 + Fe_2) + (Fx + Fy) \) with the product: \(e_1^2 = e_1e_1 = 0, \quad e_1xe_1 = \frac{1}{2}x, \quad ey = e_1 + te_2, \quad i = 1, 2 \).

The superalgebra \(D_t \) is simple if \(t \neq 0 \). In the case \(t = -1 \), the superalgebra \(D_{-1} \) is isomorphic to \(M_{1,1}(F) \).

8) The 10-dimensional Kac superalgebra (see [5]) has been proved to be exceptional in [15]. In characteristic 3 this superalgebra is not simple, but it has a subalgebra of dimension 9 that is simple (the degenerated Kac superalgebra. There are two other examples of simple Jordan superalgebras in characteristic 3, both of them exceptional (see [16]).

9) We will consider now Jordan superalgebras defined by a bracket. If \(A = A_0 + A_1 \) is an associative commutative superalgebra with a bracket on \(A \), the Kantor Double of \(A \) is \(A \otimes Z[\partial] \) with the multiplication in \(A \) given by:

\[
\partial a \otimes b = [a,b], \quad \partial (ab) = \partial a \otimes b + (-1)^{|a||b|}a \otimes \partial b,
\]

where \([a,b] = ab - ba \). The Kantor Double of the Grassmann algebra with the bracket \([\cdot, \cdot] \) is a Jordan superalgebra. Every Poisson bracket is a Jordan bracket.

10) Let \(Z \) be a unital associative commutative algebra with a derivation \(\partial : Z \to Z \). Consider the superalgebra \(CK(Z, \partial) = A + M \), where \(A = J_0 = Z + \sum_{i=1}^{3} w_i Z, \quad M = J_1 = xZ + \sum_{i=1}^{3} x_i Z \) are free \(Z \)-modules of rank 4. The multiplication on \(A \) is \(Z \)-linear and \(w_iw_j = 0, i \neq j, \quad w_1^2 = w_2^2 = 1, \quad w_3^2 = -1 \).

Denote \(x_{i\otimes i} = 0, \quad x_{1\otimes 2} = -x_{2\otimes 1} = x_3 \quad x_{1\otimes 3} = -x_{3\otimes 1} = x_2 \quad -x_{2\otimes 3} = x_{3\otimes 2} = x_1 \).

The bimodule structure and the bracket on \(M \) are defined via the following tables:

<table>
<thead>
<tr>
<th>(g)</th>
<th>(w_j g)</th>
<th>(xg)</th>
<th>(x_j g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(xf)</td>
<td>(x(fg))</td>
<td>(x_j(fg^d))</td>
<td>(xf)</td>
</tr>
<tr>
<td>(xi f)</td>
<td>(xi(fg))</td>
<td>(xi_j(fg))</td>
<td>(xi f)</td>
</tr>
</tbody>
</table>

The superalgebra \(CK(Z, \partial) \) is simple if and only if \(Z \) does not contain proper \(\partial \)-invariant ideals.

In [5], [8] it was shown that simple finite dimensional Jordan superalgebras over an algebraically closed field \(F \) of zero characteristic are those of examples 1) - 8) and the Kantor Double (example 9) of the Grassmann algebra with the bracket \(\{ f, g \} = \sum (-1)^{|f||g|} \frac{\partial f}{\partial \xi_i} \frac{\partial g}{\partial \xi_i} \).

The examples 9), 10) are related to infinite dimensional superconformal Lie superalgebras (see [6], [7]). In particular, the superalgebras \(CK(Z, \partial) \) correspond to an important superconformal algebra discovered in [1] and [2].

In [13] it was shown that the only simple finite dimensional Jordan superalgebras over an algebraically closed field of characteristic \(p > 2 \) with nonsemisimple even part are superalgebras (9), (10) built on truncated polynomials.
2. Universal enveloping algebras

In what follows the ground field \(F \) is assumed to be algebraically closed.

1. Let \(U' \) be a universal associative enveloping algebra of a special Jordan superalgebra \(J, u : J \to U' \) a universal specialization. The algebra \(U' \) is equipped with a natural superinvolution \(* \) leaving all elements from \(u(J) \) fixed. Then \(u(J) \subseteq H(U, *) \). We call a superalgebra \(J \) reflexive if \(u(J) = H(U, *) \).

Theorem 1 All superalgebras of examples 1) - 4) are reflexive except the following ones: \(\text{M}_{i,1}^{(\pm)}(F) \), \(\text{Osp}(1,2) \cong D(-2), Q(2) \). Hence,

\[
\begin{align*}
U(M_{i,1}^{(\pm)}(F)) &\cong M_{m,n}(F) \oplus M_{m,n}(F) \quad \text{for } (m,n) \neq (1,1); \\
U(P^{(\pm)}(n)) &\cong P(n) \oplus P(n), \quad n \geq 2; \\
U(\text{Osp}(m,n)) &\cong M_{m,n}(F), \quad (m,n) \neq (1,2); \\
U(Q(n)) &\cong M_{m,n}(F), \quad n \geq 3.
\end{align*}
\]

2. Let \(Z \) be an associative commutative algebra with a derivation \(D : Z \to Z \). Let \(W = Z, D > 0 \) and let \(u : CK(Z, D) \to M_{2,2}(W) \) be the embedding found in [12].

The embedding \(u \) extends the embedding of Kantor doubles of brackets of vector type found in [14].

Theorem 2 \(U(CK(Z, D)) = M_{2,2}(W) \). The embedding \(u \) is universal.

3. The superalgebra of \(CK(Z, D) \) spanned over \(F \) by the elements \(1, w_1, w_2, w_3, x, x_1, x_2, x_3 \) is isomorphic to \(Q(2) \).

Theorem 3 The restriction of the embedding \(u \) (see above) to \(Q(2) \) is a universal specialization;

\[
U(Q(2)) \cong M_{2,2}(F[t]),
\]

where \(F[t] \) is a polynomial algebra in one variable.

4. Let us describe the universal associative enveloping superalgebra of \(M_{1,1}(F) \). Consider the ring of polynomials and the field of rational functions in two variables, \(F[z_1, z_2] \subseteq F(z_1, z_2) \). Let \(K \) be the quadratic extension of \(F(z_1, z_2) \) generated by a root of the equation \(a^2 + a - z_1 z_2 = 0 \). Consider the subring \(A = F[z_1, z_2] + F[z_1, z_2]a \) and the subspaces \(M_{12} = F[z_1, z_2] + F[z_1, z_2]a^{-1} z_2, M_{21} = F[z_1, z_2]z_1 + F[z_1, z_2]a \) of \(K \). Then \(U = \left(\begin{array}{cc} A & M_{12} \\ M_{21} & A \end{array} \right) \) is a subring of \(M_{2}(K) \).

Theorem 4 \(U(M_{1,1}(F)) \cong \left(\begin{array}{cc} A & M_{12} \\ M_{21} & A \end{array} \right) \). The mapping

\[
u : \left(\begin{array}{cc} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{array} \right) \to \left(\begin{array}{cc} \alpha_{11} & \alpha_{12} + \alpha_{21} a^{-1} z_2 \\ \alpha_{12} z_1 + \alpha_{21} a \end{array} \right)
\]

is a universal specialization.

5. Let \(V = V^0 + V^1 \) be a \(Z/2Z \)-graded vector space, \(\dim V^0 = m, \dim V^1 = 2m \); let \(<,> : V \times V \to F \) be a supersymmetric bilinear form on \(V \). The universal associative enveloping algebra of the Jordan algebra \(F1 + V_T \) is the Clifford algebra \(C1(m) = \{1, e_1, \ldots, e_m | e_i e_j + e_j e_i = 0, i \neq j, e_i^2 = 1 \} \) (see [3]). Assuming the generators \(e_1, \ldots, e_m \) to be odd, we get a \(Z/2Z \)-gradation on \(C1(m) \).

In \(V_T \) we can find a basis \(v_1, v_2, \ldots, v_n, w_1, w_2, w_3, w_4 \) such that \(< v_i, w_j > = \delta_{ij}, \quad < v_i, v_j > = < w_i, w_j > = 0 \). Consider the Weyl algebra \(W_n = (1, x_i, y_j, 1 \leq i \leq n) \) such that \([x_i, y_j] = \delta_{ij}, [x_i, x_j] = [y_i, y_j] = 0 > \). Assuming
Specializations of Jordan superalgebras

$x_i, y_i, 1 \leq i \leq n$ to be odd, we make W_n a superalgebra. The universal associative enveloping algebra of $F^1 + V$ is isomorphic to the (super)tensor product $Cl(n) \otimes_F W_n$.

6. Let $osp(1,2)$ denote the Lie subsuperalgebra of $M_{1,2}(F)$ which consists of skewsymmetric elements with respect to the orthosympletic superinvolution. Let x,y be the standard basis of the odd part of $osp(1,2)$.

Theorem 5 (I. Shestakov) The universal enveloping algebra of K_3 is isomorphic to $U(osp(1,2)/id([x,y]^2 - [x,y]))$, where $U(osp(1,2))$ is the universal associative enveloping algebra of $osp(1,2)$ and $id([x,y]^2 - [x,y])$ is the ideal of $U(osp(1,2))$ generated by $[x,y]^2 - [x,y]$.

Clearly, if $ch F = 0$ then K_3 does not have nonzero specializations that are finite dimensional algebras. If $ch F = p > 0$ then K_3 has such specializations.

7. Let us consider the superalgebras $D(t)$. We will assume that $t \neq -1,0,1$, because $D(-1) \simeq M_{1,1}(F)$; $D(0) \simeq K_3 + F$; $D(1)$ is a Jordan superalgebra of a superform.

Theorem 6 (I. Shestakov) The universal enveloping algebra of $D(t)$ is isomorphic to $U(osp(1,2)/id([x,y]^2 - (1+t)[x,y] + t)$.

Corollary 1 If $ch F = 0$ then all finite dimensional one-sided bimodules over $D(t)$ are completely reducible.

Indeed, it is known (see [4]) that finite dimensional representations of the Lie superalgebra $osp(1,2)$ are completely reducible.

Now we will assume that $ch F = 0$ and will classify irreducible finite dimensional one-sided bimodules over $D(t)$. Let us first consider four infinite dimensional Verma type right modules over $U(D(t))$. Each of these bimodules is generated by an even highest weight element v.

$V_1(t) = vU(d(t))$. Defining relations: $v(xy + yx) = (2t + 1)v, vy = 0, ve_1 = v, ve_2 = 0$. Basis: $v, vy, vx^i, i \geq 1$.

$V_2(t) = vU(d(t))$. Defining relations: $v(xy + yx) = (2t + 1)v, vy = 0, ve_1 = v, ve_2 = 0$. Basis: $v, vx^i, i \geq 1$.

Changing parity we get two new bimodules $V_1(t)^{op}$ and $V_2(t)^{op}$.

Each of these bimodules has the unique irreducible homomorphism image $W_1(t)$ or $W_2(t)$ or $W_1(t)^{op}$ or $W_2(t)^{op}$ respectively.

Theorem 7 If $t = \frac{-m+1}{m}$, $m \geq 1$, then $D(t)$ has two irreducible finite dimensional one sided bimodules $W_1(t)$ and $W_1(t)^{op}$.

If $t = \frac{m}{m+1}$, $m \geq 1$, then $D(t)$ has two irreducible finite dimensional one sided bimodules $W_2(t)$ and $W_2(t)^{op}$.

If t can not be represented as $\frac{-m+1}{m}$ or $\frac{m}{m+1}$, where m is a positive integer, then $D(t)$ does not have nonzero finite dimensional specializations.

If $ch F = p > 2$ then for an arbitrary t the superalgebra $D(t)$ can be embedded into a finite dimensional associative superalgebra. It suffices to notice that $D(t) \subseteq CK(F[t]^{op}, d/dt)$.

5
References

