On the uniform limit of quasi-continuous functions

B. Rodríguez–Salinas

Abstract. We study when the uniform limit of a net of quasi-continuous functions with values in a locally convex space X is a quasi-continuous function, emphasizing that this fact depends on the least cardinal of a fundamental system of neighbourhoods of 0 in X, and giving necessary and sufficient conditions. The main result of the paper is Theorem 15, where the results of [7] and [10] are improved, in relation with a Theorem of L. Schwartz.

Sobre el límite uniforme de funciones quasi-continuas

Resumen. Estudiamos cuando el límite uniforme de una red de funciones quasi-continuas con valores en un espacio localmente convexo X es también una función quasi-continua, resaltando que esta propiedad depende del menor cardinal de un sistema fundamental de entornos de 0 en X, y estableciendo condiciones necesarias y suficientes. El principal resultado de este trabajo es el Teorema 15, en el que los resultados de [7] y [10] son mejorados, en relación al Teorema de L. Schwartz.

In general, we shall work with a measure space (Ω, Σ, μ) where Ω is a topological space, the σ-algebra Σ contains the Borel sets of Ω and $\mu(\Omega) = 1$. Suppose that X is a locally convex Hausdorff space.

We say that a function $f : \Omega \to X$ is quasi-continuous if the set of points D where f is not continuous has outer measure $\mu^*(D) = 0$.

A function $f : \Omega \to X$ is said to be Lusin measurable if for any $\varepsilon > 0$, there is a closed set $F \subseteq \Omega$ such that $\mu(\Omega \setminus F) < \varepsilon$ and the restriction $f|_F$ is continuous.

We shall use the following axiom:

Axiom L. The interval $[0, 1]$ cannot be covered by a family $(F_i)_{i \in I}$ of closed subsets of Lebesgue measure zero where the cardinal of I is less than the continuous c.

Then, according to [11,1-6-4], we have:

Proposition 1 Let Ω be a compact metrizable space, and let μ be a Radon measure on Ω. Then Axiom L implies that the union of a family $(F_i)_{i \in I}$ consisting of closed sets of measure zero such that $\text{card}(I) < c$ does not cover any set of positive measure.

Theorem 1 Assume Axiom L in the conditions of Proposition 1. Let X be a locally convex space with a base of neighbourhoods $(V_a)_{a \in A}$ of zero such that $\text{card}(A) < c$. Let $(f_i)_{i \in I}$ be a net of quasi-continuous functions $f_i : \Omega \to X$, converging uniformly to f. Then, if C is the set of points where f is continuous, we have $\mu^*(C) = 1$.
It is obvious that if X is a metrizable space, then f is quasi-continuous. In the general case, we can suppose, using [8,5.4], that X is the product $\Pi_{\alpha \in A} X_{\alpha}$ of a family of Banach spaces. Let π_{α} be the projection $X \rightarrow X_{\alpha}$ and ω_{α} the oscillation function of $\pi_{\alpha} \circ f$; then $\pi_{\alpha} \circ f$ is quasi-continuous. Let

$$G_{\alpha,n} = \{ x \in \Omega : \omega_{\alpha}(x) < 1/n \}.$$

Then, since ω_{α} is upper semicontinuous, $G_{\alpha,n}$ is an open set of measure $\mu(G_{\alpha,n}) = 1$. By Proposition 1, the union $\bigcup_{\alpha \in A, n \in \mathbb{N}} (X \setminus G_{\alpha,n})$ does not cover any set of positive measure. Hence, its inner measure is zero and

$$\mu^*(\bigcap_{\alpha \in A, n \in \mathbb{N}} G_{\alpha,n}) = 1.$$

To finish, it suffices to note that $C = \bigcap_{\alpha \in A, n \in \mathbb{N}} G_{\alpha,n}$. □

It is also useful to consider the following axiom:

Axiom M If $(A_i)_{i \in I}$ is a family of subsets of $[0,1]$ with Lebesgue measure zero and such that $\text{card}(I) < c$, then the union of the A_i’s has measure zero.

According to [11,1.6.2], we have:

Proposition 2 Assume Axiom M and suppose that (Ω, Σ, μ) is a probability space, where Σ is countably generated. Then, if $(A_i)_{i \in I}$ is a family of subsets with measure zero and such that $\text{card}(I) < c$, we have that the union also has measure zero.

Theorem 2 Assume Axiom M in the conditions of Proposition 2. Let X be a locally convex space with a base of neighbourhoods $(Y_{\alpha})_{\alpha \in A}$ of zero such that $\text{card}(A) < c$. Let $(f_{i})_{i \in I}$ be a net of quasi-continuous functions $f_{i} : \Omega \rightarrow X$, converging uniformly to f. Then f is quasi-continuous.

Proof. We just have to proceed as in Theorem 1, using Proposition 2 instead of Proposition 1. □

Remark 1 In Theorems 1 and 2, if Ω is a (\mathcal{T}_1)-space and the measure μ is diffuse, then we have that $\text{card}(\Omega) \geq c > \text{card}(A)$. As we shall soon see, these theorems do not hold if $\Omega = [0,1]$, μ is the Lebesgue measure and $\text{card}(A) = c$.

Theorem 3 Let $\Omega = [0,1]$, μ the Lebesgue measure on Ω and $X = \mathbb{R}^\mathcal{Q}$ with $\text{card}(\mathcal{Q}) = c$. Then, there exists a function $f : \Omega \rightarrow X$ which is the uniform limit of a net of quasi-continuous functions, which is not continuous at any point and having the property that any restriction $f|_H$ ($H \subseteq \Omega$) is continuous only on the countable set consisting of the isolated points of H. Hence, f is not Luzin measurable. Moreover, for any set $H \subseteq \Omega$, there exists an open set $G \subseteq X$ such that $f^{-1}(G) = H$ and f is not Borel measurable, but it is weakly measurable and its Pettis integral $\int f d\mu$ is zero.

Proof. We can assume that $A = \Omega$. Let $f = (X_{\alpha})_{\alpha \in A}$, where $X_{\alpha}(x) = 1$ for $x = \alpha$ and $X_{\alpha}(x) = 0$ for $x \neq \alpha$. The function $f : \Omega \rightarrow X$ is nowhere continuous but it is the uniform limit of a net $(f_{i})_{i \in I}$, where every $i \in I$ is a finite subset of Ω, I is ordered by inclusion and $\pi_{\alpha} \circ f_{i} = X_{\alpha}$ for every $\alpha \in i$ and $\pi_{\alpha} \circ f_{i} = 0$ for any $\alpha \notin i$, which implies that every function f_{i} is quasi-continuous. Moreover, let H be a subset of Ω, then the restriction $f|_H$ is continuous only on the countable set that contains the isolated points of H.

Finally, if $U = (0,2)$ and $U_{\alpha} = \pi_{\alpha}^{-1}(U)$, we have

$$f^{-1}(U_{\alpha}) = X_{\alpha}^{-1}(U) = \alpha,$$

and hence $G = \bigcup_{\alpha \in H} U_{\alpha}$ is an open subset of X such that

$$f^{-1}(G) = \bigcup_{\alpha \in H} f^{-1}(U_{\alpha}) = H.$$

In addition, for any $x^* \in X^*$, since by [3,Proposition 3.14.1] $x^* \circ f$ vanishes outside a finite set, it follows that $x^* \circ f$ is zero almost everywhere in Ω and hence, the Pettis integral $\int f d\mu$ is zero. □
Remark 2: We can choose I to be the lattice consisting of the countable subsets of Ω. In this case, for any sequence (i_n) in I, there exists $i = \bigcup_{k \in \mathbb{N}} i_k \geq i_n$ for all $n \in \mathbb{N}$.

We can prove in a similar fashion the following theorem:

Theorem 4: Let $\Omega = A$ be a (T_1)-topological space, μ a diffuse probability measure on Ω and $X = \mathbb{R}^A$. Then there exists a function $f : \Omega \to X$ which is the uniform limit of a net of quasi-continuous functions, and having the property that any restriction $f|_H$ is continuous only on the set of isolated points of H, and that for every subset $H \subseteq \Omega$, there exists an open subset $G \subseteq X$ such that $f^{-1}(G) = H$. Therefore, if the set of isolated points of Ω has measure less than 1, f is not quasi-continuous and if there exists a non-measurable set H, f is neither Borel measurable nor Lusin measurable.

Remark 3: If $\text{card}(\Omega)$ is of measure zero, the measure of the set consisting of the isolated points of Ω has μ-measure zero and there is a non-measurable set in Ω. According to [5,2.5], the same happens if $\text{card}(\Omega)$ is not measurable and μ is a perfect measure. We also have that if μ is a τ-additive measure, the set of isolated points of Ω has measure zero. Since the same holds for every subset H of Ω and the induced measure μ_H, f is not Lusin measurable.

A set is said to be a D-set if it is the set $D(f)$ of the discontinuity points of a function $f : \Omega \to \mathbb{R}$. It is clear that any D-set is an F_σ-set.

It is obvious that the set which contains all the discontinuity points of a function $f = (f_\alpha)_{\alpha \in A} : \Omega \to X = \mathbb{R}^A$ is $\bigcup_{\alpha \in A} D(f_\alpha)$. Then we have:

Theorem 5: If $X = \mathbb{R}^A$, then for any quasi-continuous function $f_\alpha : \Omega \to \mathbb{R}$, the function $f = (f_\alpha)_{\alpha \in A} : \Omega \to X$ is quasi-continuous if and only if the union of any family $(D_\alpha)_{\alpha \in A}$ of D-sets of measure zero, has outer measure zero.

Theorem 6: Suppose that the support of μ is Ω and that X is an arbitrary locally convex space having a base $(V_\alpha)_{\alpha \in A}$ of neighbourhoods of zero. Let $f : \Omega \to X$ be the uniform limit of a net of quasi-continuous functions. Then f is quasi-continuous if and only if any union $\bigcup_{\alpha \in A} F_\alpha$ of closed sets of Ω having measure zero, has outer measure zero.

Proof: Sufficiency follows as in Theorem 1. Necessity follows from Theorem 5 taking into consideration that if F is a closed set with measure zero, then $\text{ind}(F) = \emptyset$, and hence, $D(X_F) = F$. In this last step we have used the fact that $\text{supp}(\mu) = \Omega$. ■

Remark 4: Theorem 6 can be extended to any τ-additive measure μ.

If $(F_\alpha)_{\alpha \in A}$ is a family of closed sets having μ-measure zero, such that
\[\mu^*(\bigcup_{\alpha \in A} F_\alpha) > 0, \]
and $\text{card}(A)$ is of measure zero, then if we suppose that A is well ordered and we set $A_\alpha = F_\alpha \setminus \bigcup_{\beta < \alpha} F_\beta$, we can easily see that $f = (X_{A_\alpha})_{\alpha \in A} : \Omega \to X = \mathbb{R}^A$ is a non-measurable Borel function which is the uniform limit of quasi-continuous functions. This result holds as well, according to [5,2.5], if μ is a perfect measure and $\text{card}(A)$ is not measurable. On the other hand, if Ω is endowed with the discrete topology, every function $f : \Omega \to X$ is continuous. But if μ is a diffuse measure, the latter is equivalent to the fact that $\text{card}(\Omega)$ does not have measure zero.

It is easily checked that if $\kappa = \kappa(\mu)$ is the least cardinal of the sets A having the property that $\mu^*(\bigcup_{\alpha \in A} F_\alpha) > 0$ for a family $(F_\alpha)_{\alpha \in A}$ of closed sets of measure zero, then κ is not the supremum of a sequence of cardinals less than κ, which is obviously less than or equal to $\text{card}(\Omega)$ if Ω is a (T_1)-space and μ is a diffuse measure. Axiom M implies that $\kappa(\mu) \leq \mathfrak{c}$ for the Lebesgue measure μ on $\Omega = [0, 1]$, and this in turn implies Axiom L.

We say that a cardinal is primary if it is not the supremum of a sequence of cardinals less than itself.
Corollary 1 There exists a Radon measure μ and a function $f : \Omega \rightarrow X = \mathbb{R}^k$ that is not quasi-continuous nor Borel measurable and yet it is the uniform limit of a net of quasi-continuous functions.

PROOF. It turns out from Theorem 6 by taking into consideration that, according to Haydon [2, 15.1], there exists a Radon measure μ for which the union of $\cap \alpha_1$ closed sets of measure zero may be not measurable.

In the same way as in Theorem 6 but in the same direction as Theorem 1, we can give a necessary and sufficient condition in order that $\mu^*(C) = 1$ for the set C consisting of the continuity points of every function $f : \Omega \rightarrow X$ which is the uniform limit of a net of quasi-continuous functions.

Theorem 7 If (Ω, Σ, μ) verifies $\mu(\bigcup_{\alpha \in A} F_\alpha) = 0$ for every family $(F_\alpha)_{\alpha \in A}$ of closed subsets of measure zero with $\text{card}(A) \leq \kappa$, then there exists a probability space (Ω, Σ', ν) such that ν is an extension of μ and $\kappa(\nu) > \kappa$.

PROOF. We can assume that $\kappa \geq \aleph_0$. Let \mathcal{H} be the set consisting of the unions $\bigcup_{\alpha \in A} F_\alpha$ and

$$\nu^*(E) = \inf_{H \in \mathcal{H}} \mu^*(E \setminus H) \quad (E \subseteq \Omega).$$

First of all, we are going to prove that ν^* is an outer measure. Indeed, for every $\varepsilon > 0$ and $E_n \subseteq \Omega$ there exists an $H_n \in \mathcal{H}$ ($n \in \mathbb{N}$) such that

$$\nu^*(E_n) + \varepsilon 2^{-n} > \mu^*(E_n \setminus H_n),$$

and therefore

$$\sum_n \nu^*(E_n) + \varepsilon > \sum_n \mu^*(E_n \setminus H_n) \geq \mu^*(\bigcup_n E_n \setminus \bigcup_n H_n) \geq \nu^*(\bigcup_n E_n),$$

from which it follows that

$$\nu^*(\bigcup_n E_n) \leq \sum_n \nu^*(E_n).$$

Let (E_n) be a disjoint sequence in Σ and take $M \subseteq \Omega$. Then, for every $\varepsilon > 0$, there exists an $H \in \mathcal{H}$ such that

$$\nu^*(M \cap \bigcup_n E_n) + \varepsilon > \mu^*(M \cap \bigcup_n E_n \setminus H)$$

$$= \sum_n \mu^*(M \cap E_n \setminus H)$$

$$\geq \sum_n \nu^*(M \cap E_n),$$

and therefore

$$\nu^*(M \cap \bigcup_n E_n) = \Sigma_n \nu^*(M \cap E_n).$$

From the latter, it turns out that the restriction of ν^* to the σ-algebra $\Sigma' \supseteq \Sigma$ consisting of the ν^*-measurable sets, is a measure ν, which is an extension of μ since $\nu(B) = \mu(B)$ for every set $B \in \Sigma$. Then, since $\nu^*(H) = 0$ for every $H \in \mathcal{H}$, it follows that $\kappa(\nu) > \kappa$.

A slight change in the previous proof allows us to prove the following theorem:

Theorem 8 If (Ω, Σ, μ) has the property that $\mu(\bigcup_{\alpha \in A} F_\alpha) = 0$ for every family $(F_\alpha)_{\alpha \in A}$ of closed sets having measure zero with $\text{card}(A) < \kappa$ and κ being a primary cardinal, then there exists a probability space (Ω, Σ', ν) such that ν is an extension of μ and $\kappa(\nu) \geq \kappa$.

32
Corollary 2 From axiom L it follows that for every cardinal $\kappa < c$ there exists a probability measure μ on $\Omega = [0, 1]$ which is the extension of the Lebesgue measure and such that $\kappa(\mu) > \kappa$. If c is not primary, $\kappa(\mu) < c$ holds for such measures, and if c is primary, we can say that $\kappa(\mu) = c$ for one of them.

Theorem 9 If μ is a regular measure and there exists a measurable function $f : \Omega \to \mathbb{R}$ such that $\mu \circ f^{-1}$ is a diffuse measure, we have that $\kappa(\mu) \leq c$.

Proof. Since μ is a regular measure, by Lusin’s theorem there exists a closed set $F \subseteq \Omega$ of positive measure such that the restriction $f|_F$ is continuous. Then, if $F_\alpha = f^{-1}(\alpha) \cap F$ for $\alpha \in \mathbb{R}$, we have that every F_α is a closed set of measure zero and $\mu(\bigcup_{\alpha \in A} F_\alpha) = \mu(F) > 0$.

Remark 5 According to a theorem of Zink [5, 2.2], if μ is a separable measure, there is a measurable function $f : \Omega \to [0, 1]$ such that $\mu \circ f^{-1}$ is the Lebesgue measure. Similarly, by [5, 2.1], if μ is a non-atomic measure, there exists a measurable function $f : \Omega \to [0, 1]$ such that $\mu \circ f^{-1}$ is the Lebesgue measure.

Corollary 3 If μ is a regular non-atomic measure, then $\kappa(\mu) \leq c$.

Remark 6 If μ is an atomic measure then it can trivially happen that $\mu(\bigcup_{\alpha \in A} F_\alpha) = 0$ for every family $(F_\alpha)_{\alpha \in A}$ consisting of null-measure sets.

If μ is a diffuse probability measure on a metric space Ω whose density character is non-measurable then, according to [6], μ is a non-atomic measure, and hence, $\kappa(\mu) \leq c$.

Theorem 10 If Ω is a completely regular Hausdorff space and μ is a weakly τ-additive measure such that for every $x \in \Omega$ and every $\varepsilon > 0$ there exists an open neighbourhood V of x with $\mu(V) < \varepsilon$, then $\kappa(\mu) \leq c$.

Proof. Let λ be the restriction of μ to the σ-algebra $\mathcal{B}_0(\Omega)$ of the Baire subsets of Ω. If there were an atom B of λ then there would also exist a closed atom $F \subseteq B$ of λ. Hence, by the assumption above, for each $x \in F$ there exists an open neighbourhood $V_x \in \mathcal{B}_0(\Omega)$ such that $\lambda(V_x \cap F) \neq 0$. Let $F_x = F \setminus V_x$, then $\cap_{x \in F} F_x = \emptyset$, from which it follows (taking into account the fact that μ is a weakly τ-additive) that there is a sequence (F_{x_n}) such that $\lambda(\cap_{n \in \mathbb{N}} F_{x_n}) = 0$, and this contradicts the fact that $\lambda(F_{x_n}) = \lambda(F) > 0$. Therefore λ is a non-atomic measure and, according to [5, 2.1], there exists a λ-measurable function $f : \Omega \to [0, 1]$ such that $\lambda \circ f^{-1}$ is the Lebesgue measure. From this it immediately follows, as in Theorem 9, that $\kappa(\mu) \leq \kappa(\lambda) \leq c$.

Remark 7 The property that for every $x \in \Omega$ and $\varepsilon > 0$ there exists an open neighbourhood V of x such that $\mu(V) < \varepsilon$ is equivalent to saying $\lambda^*(\{x\}) = 0$ for every $x \in \Omega$. In general, being Ω a Hausdorff space, $\sum_{x \in \Omega} \lambda^*(\{x\}) \leq \mu(\Omega)$ and, if $\sum_{x \in \Omega} \lambda^*(\{x\}) < \mu(\Omega)$, then it follows from the remaining conditions of Theorem 10 that $\kappa(\mu) \leq c$. From this it turns out that $\kappa(\mu) \leq c$ whenever Ω is a compact infinite Hausdorff group and μ is invariant under left translations.

If μ is a diffuse measure then the function X_ω $(\omega \in \Omega)$ is Lusin measurable if and only if $\lambda^*(\{\omega\}) = 0$.

Theorem 11 If Ω is a completely regular Hausdorff space and μ is a weakly τ-additive measure such that its support S is not separable then $\kappa(\mu) \leq c$.

Proof. Let λ be the restriction of μ to $\mathcal{B}_0(\Omega)$ and H the closure of the countable set $\{x \in \Omega : \lambda^*(\{x\}) > 0\}$. Since S is non-separable, we have $S \setminus H \neq \emptyset$ and $\mu(\Omega \setminus H) > 0$ and there exists a closed set $F \in \mathcal{B}_0(\Omega)$ with positive measure $\lambda(F) > 0$ which is disjoint from H. Then, by applying Theorem 10 to the induced measure μ_F it turns out that $\kappa(\mu_F) \leq \kappa(\mu_F) \leq c$. ■
Remark 8 If Ω is a compact Hausdorff space and μ is a diffuse measure with separable support, the question comes down to the case when the support is a singleton. Indeed, if \(x_n \) are the points of \(\{ x \in \Omega : \lambda^*(x) > 0 \} \) and \(\sum \lambda^*(x_n) = \mu(\Omega) \), there exists a sequence \((F_n) \) of pairwise disjoint closed Baire sets such that \(x_n \in F_n \), and hence the probability measures \(\mu_n \) defined by
\[
\mu_n(A) = \frac{\mu(A \cap F_n)}{\lambda^*(x_n)} \quad (A \in \Sigma)
\]
have the sets \(\{x_n\} \) as supports, and \(\kappa(\mu) = \min_n \kappa(\mu_n) \).

Theorem 12 If Ω is a separable Hausdorff space and μ is a diffuse measure, then \(\kappa(\mu) \leq 2^\omega \).

Proof. Let \(D \) be a dense sequence in Ω. Then for all \(x \in \Omega \) there exists an ultrafilter \(\mathcal{U}_x \) in \(D \) which converges to \(x \), and the mapping \(x \mapsto \mathcal{U}_x \) is one-to-one. Since, according to [1], the cardinal of such ultrafilters is less than or equal to \(2^\omega \), and \(\mu \) is a diffuse measure, it follows that \(\kappa(\mu) \leq \text{card}(\Omega) \leq 2^\omega \). ■

Remark 9 If μ is a diffuse measure and the σ-algebra of the measurable sets is countably generated, then, as in [11, 1.6.2], one can deduce that \(\kappa(\mu) \leq \omega \).

Theorem 13 If Ω is a completely regular Hausdorff space and the cardinal of the support \(S \) of the measure Σ is greater than \(2^\omega \), then \(\kappa(\mu) \leq \omega \).

Proof. By using the usual extension \(\nu \) of μ on the Stone-Cech compactification \(\beta \Omega \) of Ω, which has the property that the induced measure \(\nu_\Omega \) coincides with μ, we can assume that Ω is a compact space. Now, since \(\text{card}(S) > 2^\omega \), from the proof of Theorem 12 it follows that \(S \) is not separable, and from Theorem 11 it turns out that \(\kappa(\mu) \leq \omega \). ■

Corollary 4 If Ω is a completely regular Hausdorff space and μ is a diffuse measure such that its support has positive measure, then \(\kappa(\mu) \leq \omega \).

Theorem 14 For every cardinal \(\kappa \) there exists a diffuse measure \(\mu \) on a \((\,\mathbb{C}\,\)space Ω such that \(\kappa(\mu) > \kappa \) and \(\text{supp} \mu = \Omega \).

Proof. We may assume that \(\kappa \) is infinite. Let Ω be a set whose cardinal is greater than \(\kappa \), and let us endow Ω with the topology whose closed sets are \(\Omega \) and all the sets with cardinal less than or equal to \(\kappa \). Let \(\Sigma \) be the corresponding Borel σ-algebra on Ω, and let us define the measure \(\mu \) by putting, for \(A \in \Sigma \), either \(\mu(A) = 0 \) or \(\mu(A) = 1 \) depending on whether \(\text{card}(A) \leq \kappa \) or \(\text{card}(A) > \kappa \). Then, as \(\kappa^2 = \kappa \), it follows that \(\kappa < \kappa(\mu) \leq \text{card}(\Omega) \). ■

Theorem 15 For every cardinal \(\kappa \) there exists a completely regular space \(\Omega = (\mathbb{C}(K), \text{weak}) \) and a probability measure \(\mu \) with empty support on \(\Omega \) such that \(\kappa(\mu) > \kappa \).

Proof. We shall proceed as in [10] and [7]. We may assume that \(\kappa > \aleph_0 \) is not a limit cardinal. Let \(\omega \) be the first ordinal with cardinal \(\kappa \) and let \(T_0 = \{ \alpha : \alpha \leq \omega \} \). Let us endow \(T_0 \) with the topology consisting of all the subsets of \(T = T_0 \setminus \{ \omega \} \) and such that the neighbourhoods of \(\omega \) are the complements of the subsets of \(T \) whose cardinal are less than \(\kappa \). With this topology \(T_0 \) is a space \((T_\alpha) \). Let \(K \) be the Stone-Cech compactification of \(T_0 \) and put \(\Omega = (\mathbb{C}(K), \text{weak}) \). The set \(\mathcal{V}_0 \) of all the neighbourhoods of \(\omega \) is stable with respect intersections of families with cardinal less than \(\kappa \), because \(\kappa \) is not a limit cardinal, and it admits a fundamental system \(\mathcal{V} \) consisting of open-closed neighbourhoods. Let \(F \) denote the set of all continuous functions from \(K \) to \(\{0, 1\} \) which vanish at \(\omega \). It is clear that \(F \) is a weakly closed set.

We shall construct two classes \(\mathcal{C} \) and \(\mathcal{D} \) of Borel sets in \((F, \text{weak}) \) such that
(i) The smallest σ-algebra containing \(\mathcal{C} \) is the class \(\mathcal{B}_F \) of the Borel sets of \((F, \text{weak}) \).
(ii) If $C \subseteq \mathcal{C}$ then either $C \subseteq \mathcal{D}$ or $F \setminus C \subseteq \mathcal{D}$.

(iii) The intersection of any family of elements in \mathcal{D} with cardinal less than κ is not empty.

(iv) For all $t \in K \setminus \{\omega\}$, the set $\{f \in F : f(t) = 1\}$ belongs to \mathcal{D}.

Then we can define a Borel measure λ on (F, weak) by putting $\lambda(B) = 1$ whenever $B \in \mathcal{B}_F$ and B contains the intersection of a family of elements of \mathcal{D} with cardinal less than κ, and $\lambda(B) = 0$ otherwise. Hence for every family $(F_a)_{a \in A}$ of null-λ-measure subsets $F_a \in \mathcal{B}_F$ with $\text{card} A < \kappa$ we have $\lambda_*(\bigcup_{a \in A} F_a) = 0$. And λ is a non-weakly-τ-additive measure with empty support, because F is the union of the open sets $G_t = \{f : f(t) = 0\}$ when $t \in K \setminus \{\omega\}$, $\lambda(F) = 1$, and $\lambda(G_t) = 0$. From this it follows that there exists a measure with similar properties on Ω, which we shall keep denoting λ.

Let k be an integer, J a set, $(\mu^p_j)_{p \leq k, j \in J}$ Radon measures on K with $\mu^p_j(K) = 1$, and $(a^p)_{p \leq k}$, $(b^p)_{p \leq k}$ rational numbers such that $a^p < b^p$. Now we define \mathcal{C} to be the class of all sets $C = \bigcup_{j \in J} U_j$, where

$$U_j = \{f \in F : \forall p \leq k, \mu^p_j(f) \in (a^p, b^p)\},$$

and k, J, the measures μ^p_j, a^p, and b^p vary.

The class \mathcal{D} consists of all the sets $C \subseteq \mathcal{C}$ such that for all $V \subseteq K$ there exist $j \in J$ and $f \in U_j$ with $f = 1$ on $K \setminus V$, and also of all the complements $F \setminus C$ of the sets which do not satisfy this condition. Only (iii) needs to be proved. To this end, it is enough to show that for every family $(C_a)_{a \in A} \subseteq \mathcal{C} \cap \mathcal{D}$, where $A = \{\alpha : \alpha < \alpha_0\}$ and $\alpha_0 < \omega$, and for every $V_0 \subseteq K$, there exists $f \in \bigcap_{\alpha \in A} C_\alpha$ such that $f = 1$ on $K \setminus V_0$. It is easy to prove (with the obvious notation) that for all $\alpha \in A$ there exists $\varepsilon_\alpha > 0$ such that if $W \subseteq V$ then there exist $j \in J_\alpha$ and $f \in U^{\alpha}_j$ with $f = 1$ on $K \setminus W$, where

$$U^{\alpha}_j = \{f \in F : \forall p \leq k_\alpha, \mu^p_{j, \alpha}(f) \in (a^p + \varepsilon_\alpha, b^p - \varepsilon_\alpha)\}.$$

Let \mathcal{U}_α be an ultrafilter on J_α containing all the sets

$$\{j \in J_\alpha : \exists f \in U^{\alpha}_j, f = 1 \text{ on } K \setminus V\}$$

whenever $V \subseteq K$. Let $p \leq k_\alpha$ be given, and let us put $\nu^p_{\alpha} = \lim_{\mathcal{U}_\alpha} \mu^p_{j, \alpha}$. Then, there exists $V \subseteq K$, $V \subseteq V_0$, such that $\nu^p_{\alpha}(V \setminus W) = 0$ for all $W \subseteq V$, $p \leq k_\alpha$ and $\alpha \in A$. In the same way as in [7], but performing a transfinite induction in $\alpha \in A$, it can be proved that there exist f_α, $j_\alpha \in J_\alpha$, V_α, $V'_\alpha \subseteq K$, and open-closed sets $H_{\alpha, 0}, H_{\alpha, 1}$ in K such that

(i) The sets V_α satisfy $V_\alpha \subseteq \cap_{\beta < \alpha} V'_\beta$ and $V_\alpha \cap (H_{\beta_0} \cup H_{\beta_1}) = \emptyset$ for all $\beta < \alpha \in A$, with $V_1 = V$.

(ii) $\mu^{\alpha}_{j_\alpha, \alpha}(V \setminus V'_\alpha) < \varepsilon_\alpha/2$ for all $\alpha \in A$ and $p \leq k_\alpha$.

(iii) $f_\alpha \in U^{\alpha}_{j_\alpha}$ and $f_\alpha = 1$ on $K \setminus V_\alpha$.

(iv) $f_\alpha = 0$ on $V'_\alpha \subseteq V_\alpha$ and $\mu^{\alpha}_{j_\alpha, \alpha}(V'_\alpha \setminus \{\omega\}) = 0$ for all $\alpha \in A$ and $p \leq k_\alpha$.

(v) $\bar{A}_{00} = \emptyset$, $\bar{A}_{01} = K \setminus V$, $\bar{A}_{00} = \{t \in V \setminus V'_\alpha : f_\alpha(t) = 0\}$, and $\bar{A}_{01} = \{t \in V_\alpha \setminus V'_\alpha : f_\alpha(t) = 1\}$.

(vi) $\{\omega\}, H_{00}$ and H_{01} are disjoint sets such that $H_{\alpha_i} \supseteq A_{\alpha_i} \cup H_{\alpha_{i-1}}$ if α has a predecessor $\alpha - 1$, and $H_{\alpha_i} \supseteq A_{\alpha_i} \cup \cup_{\beta < \alpha} H_{\beta_1}$ whenever α is a limit ordinal ($H_{00} = \emptyset$) for $i = 0, 1$.

It is obvious that for $\alpha = \alpha_0$ (or $\alpha < \alpha_0$), the open sets $G_0 = \cup_{\beta < \alpha} H_{\beta_0}$ and $G_1 = \cup_{\beta < \alpha} H_{\beta_1}$ are disjoint, and moreover

$$\overline{G_0} \cap \overline{G_1} = (G_0 \cap T) \cup (G_1 \cap T) = \emptyset,$$

because the sets $G_i \cap T$ are disjoint and open-closed in T_0. Then $H = \overline{G_1}$ is an open-closed set in K such that $\overline{G_0} \cap H = \emptyset$ and $\omega \notin H$.
The function \(f = X_{\mathcal{H}} \) satisfies \(f = f_a \) on \(A_a = A_{a_0} \cup A_{a_1} \). Moreover, for all \(\alpha \in A \) and all \(p \leq k_\alpha \), we have \(\mu_{\alpha}^p (f \neq f_a) < \varepsilon_\alpha \). Hence it follows that \(f \in U_{\mathcal{J}_a} \) for all \(\alpha \in A \). Therefore \(f \in \cap_{a \in A} \mathcal{C}_a \) and \(f = 1 \) on \(K \setminus V_0 \).

Since for every family \((F_\alpha)_{\alpha \in A} \) of \(\lambda \)-measure sets \(F_\alpha \in \mathcal{B}_\lambda \) with \(\text{card} A < \kappa \) we have \(\lambda_\alpha (\cup_{\alpha \in A} F_\alpha) = 0 \) then, according to Theorem 8, it turns out that there exists an \(\mu \) of \(\lambda \) such that \(\kappa (\mu) \geq \kappa \).

Given a cardinal \(\kappa \), a \(\sigma \)-algebra \(\Sigma \) is said to be a \(\kappa \)-algebra provided \(\Sigma \) is stable under unions and intersections of cardinal less than \(\kappa \). A measure \(\mu \) on a \(\kappa \)-algebra \(\Sigma \) is said to be \(\kappa \)-additive provided that for every disjoint family \((H_\alpha)_{\alpha \in A} \) of sets \(H_\alpha \in \Sigma \) with \(\text{card} A < \kappa \) one has \(\mu (\cup_{\alpha \in A} H_\alpha) = \sum_{\alpha \in A} \mu (H_\alpha) \).

Remark 10 Given a cardinal \(\kappa \), a slight modification of the above proof allows to show, without using Theorem 11, the existence of a \(\kappa \)-additive measure \(\mu \neq 0 \) taking values in \(\{0,1\} \), with empty support on a \(\kappa \)-algebra \(\Sigma \) of subsets of a space \(\Omega = (C(K), \text{weak}) \). Then \(\kappa (\mu) \geq \kappa \) holds too.

For such measures \(\mu \) taking values in \(\{0,1\} \), in a similar way and with the same notations as in the remark following Theorem 6, it turns out that if \(\text{card} A \) is non-measurable, then \(f = (X_{A_\alpha})_{\alpha \in A} : \Omega \rightarrow \mathbb{R}^\kappa \) is a non-Borel-measurable function which is the uniform limit of a net of quasi-continuous functions.

Going more deeply into this matter, we shall prove the following Theorem without the above hypothesis.

Theorem 16 Let \(\Omega, \mathcal{D} \) and \(\kappa = \aleph_{\xi+1} \) be as in Theorem 15, let \(\Sigma \) be the \(\kappa \)-algebra generated by the Borel sets of \(\Omega \), and let \(\mu \) be the \(\kappa \)-additive measure defined on \(\Sigma \) by setting \(\mu (A) = 1 \) if \(A \in \Sigma \) and \(A \) contains an intersection of \(\aleph_\xi \) subsets of \(\mathcal{D} \), and \(\mu (A) = 0 \) otherwise. Then there exists a non-measurable union of a disjoint family of \(\kappa \) closed null measure sets \(F_\alpha \), and therefore \(f = (X_{F_\alpha})_{\alpha \in A} : \Omega \rightarrow \mathbb{R}^\kappa \) is a non-Borel-measurable function which is the uniform limit of a net of quasi-continuous functions, and \(\kappa (\mu) = \kappa \).

Proof. Using the same notations as in Theorem 15, let \(G_t = \{ f \in F : f(t) = 0 \} \) for \(t \in T = \{ t : t < \omega \} \). Then, in the usual way, we can obtain a disjoint family \((F_t)_{t \in T} \) of closed sets such that \(F_t \subseteq G_t \) for every \(t \) and \(\bigcup_{t \in T} F_t = \bigcup_{t \in T} G_t = F \). Assume that every union of sets \(F_t \) is \(\mu \)-measurable. Then we can define a measure \(\nu \) on all the subsets of \(T \) by setting \(\nu (H) = \mu (\bigcup_{t \in H} F_t) \) for every subset \(H \subseteq T \). Now, proceeding as in [12], we can construct a matrix \((A_t^s)\) of \(\aleph_\xi \) rows and \(\aleph_{\xi+1} \) columns whose entries are subsets of \(T \) with the following properties:

(i) For each row \(s \), \((A_t^s) \cap (A_t^{s'}) = \emptyset \) for \(t \neq t' \).

(ii) For each column \(t \), \(T \setminus \bigcup_s A_t^s \) is a set of cardinal less than \(\kappa \).

Being \(\nu (T \setminus \bigcup_s A_t^s) = 0 \), it follows that \(\nu (\bigcup_s A_t^s) = 1 \), and therefore for each \(t \) there exists \(s_t \in \mathcal{S}_t \) such that \(\nu (A_t^{s_t}) > 0 \), since the union of \(\aleph_\xi \) \(\nu \)-null measure sets has measure zero. But then there exists a row \(s \) with \(\kappa > \aleph_0 \) pairwise disjoint sets of positive \(\nu \)-measure, which contradicts the fact that the measure \(\nu \) is finite.

Acknowledgement. This paper is supported in part by DGICYT grant PB97-0240.

References

On the uniform limit of quasi-continuous functions

B. Rodríguez–Salinas
Departamento de Análisis Matemático
Facultad de Matemáticas
Universidad Complutense de Madrid
28040 Madrid, Spain