Unitary sequences and classes of barrelledness

M. López Pellicer and S. Moll

Abstract. It is well known that some dense subspaces of a barrelled space could be not barrelled. Here we prove that dense subspaces of $l_\infty(\Omega, X)$ are barrelled (unordered Baire-like or $p-$barrelled) spaces if they have “enough” subspaces with the considered barrelledness property and if the normed space X has this barrelledness property.

These dense subspaces are used in measure theory and its barrelledness is related with some sequences of unitary vectors.

1. Preliminaries

Along this paper Ω will denote a non void set, X a normed space over the field K of real or complex numbers, $l_\infty(\Omega, X)$ the linear space over K of all those functions $f: \Omega \rightarrow X$ such that the set $\{\|f(\omega)\|: \omega \in \Omega\}$ is bounded, equipped with the supremum norm $\|f\|_\infty = \sup\{\|f(\omega)\|: \omega \in \Omega\}$, $bcs(\Omega, X)$ the linear subspace of $l_\infty(\Omega, X)$ of all those functions $f \in l_\infty(\Omega, X)$ countably supported and $c_0(\Omega, X)$ the linear subspace of $bcs(\Omega, X)$ of all those functions $f: \Omega \rightarrow X$ such that for each $\varepsilon > 0$ the set $\{\omega \in \Omega : \|f(\omega)\| > \varepsilon\}$ is finite or empty.

Let us recall that a (Hausdorff) locally convex space E is barrelled if each barrel (i.e. each absorbing, closed and absolutely convex set) in E is a neighborhood of the origin (see [14, Definition 4.1.1]).

A $p-$net in a vector space Y (see [1]) is a family $\mathcal{W} = \{E_t : t \in T_p\}$ of linear subspaces of Y, with $T_p = \bigcup_{k=1}^{p} N^k$, such that $Y = \bigcup_{n \in \mathbb{N}} E_n, E_n \subset E_{n+1}, E_t = \bigcup_{n \in \mathbb{N}} E_{t,n}$ and $E_{t,n} \subset E_{t,n+1}$, for $t \in T_{p-1}$ and $n \in \mathbb{N}$.

A (Hausdorff) locally convex space E is barrelled of class p ($p-$barrelled for short) if given a $p-$net $\mathcal{W} = \{E_t : t \in T_p\}$ there is a $t \in \mathbb{N}^p$ such that E_t is barrelled and dense in E. The barrelled spaces of class 1 were introduced by Valdivia in [23] with the name suprabarrelled spaces, also called (db)-spaces in [15] and [20].
Other definitions of barrelled spaces related to the Banach-Steinhaus theorem or with the closed graph theorem may be found in [6, Theorems 1.1.4, 1.1.8, 3.2.2 and 3.2.4].

It has been discovered that some of the classical barrelled functional spaces are barrelled spaces of class \(p \). For instance, Dieudonné (cf. [25, p. 133]) proved that \(l_0^{\infty} \) (i.e., the linear subspace of \(l_\infty \) formed by the sequences taking finitely many different values) is barrelled. The barrelledness of \(l_0^{\infty} \) was also pointed out independently by Saxon [19]. If \(A \) is a ring of subsets of \(\Omega \) and \(l_0^{\infty}(A) \) is the linear hull with coefficients in \(K \) of the characteristic functions \(\chi_A, A \in A \), endowed with the supremum norm, Schachermayer [21] noticed that \(l_0^{\infty}(A) \) is barrelled if and only if its dual \(ba(A) \), the vector space over \(K \) of the bounded finitely additive scalar measures defined on \(A \) equipped with the supremum norm, verifies the Nikodým boundedness theorem ([2, p. 80]).

If \(A \) is a \(\sigma \)-algebra Valdivia noticed that \(l_0^{\infty}(A) \) is suprabarrelled [23] and Ferrando and López Pellicer found that \(l_0^{\infty}(A) \) is \(p- \) barrelled [4]. Some other strong barrelledness properties of \(l_0^{\infty}(A) \) and applications may be found in [5], [8], [9], [11], [16] and [17].

It was proved in [13] that if \(\Omega \) is countable infinite then \(c_0(\Omega, X) \) is barrelled if and only if \(X \) is barrelled. For an infinite set \(\Omega \), it has been established in [7] that \(c_0(\Omega, X) \) is barrelled, ultrabornological or unordered Baire-like (22) if and only if \(X \) is barrelled, ultrabornological or unordered Baire-like, respectively. In [12] it has been proved that \(c_0(\Omega, X) \) is 1- barreled if and only if \(X \) is 1- barrelled.

The aim of this paper is to prove that \(c_0(\Omega, X), bcs(\Omega, X) \) and a wide class of subspaces of \(bcs(\Omega, X) \) are (barrelled) \(p- \) barrelled if and only if \(X \) is (barrelled) \(p- \) barrelled.

In what follows \(supp(f) \) means the support of \(f \), i.e. \(supp(f) = \{ x \in \Omega : f(x) \neq 0 \} \). We are going to use the classical notation given, for instance, in [2] and [25]. The linear hull of a subset \(A \) of a linear space \(E \) will be denoted by \(\langle A \rangle \).

If \(E \) is a linear subspace of \(bcs(\Omega, X) \) we will denote by \(S_E \) the family of all sequences \(\{ f_n : n \in \mathbb{N} \} \) such that \(f_n \in E, \| f_n \|_\infty = 1 \) for each \(n = 1, 2, \ldots \) and whose support verify one of the following conditions:

a) \(supp(f_n) \cap supp(f_m) = \emptyset \) if \(n \neq m \)

b) there is a countable set \(\{ w_1, w_2, \ldots, w_n, w_{n+1}, \ldots \} \subset \Omega \) such that \(supp(f_n) \subset \{ w_{n+1}, w_{n+2}, \ldots \} \) for \(n = 1, 2, \ldots \).

If \(f \in E \) and \(\Gamma \subset \Omega \) then \(P_\Gamma f \) is the element of \(bcs(\Omega, X) \) such that \((P_\Gamma f)(x) = f(x) \) if \(x \in \Gamma \) and \((P_\Gamma f)(x) = 0 \) when \(x \notin \Gamma \). We will define \(E(\Gamma) = \{ f \in E : supp(f) \subset \Gamma \} \) and, in particular \(bcs(\Gamma, X) = \{ f \in bcs(\Omega, X) : supp(f) \subset \Gamma \} \).

We will denote by \(B \) the family of linear subspaces of \(bcs(\Omega, X) \) such that if \(E \in B \) and \(\Delta \subset \Gamma \subset \Omega \), being \(\Delta \) finite and \(\Gamma \) countable, then \(bcs(\Delta, X) \subset E(\Gamma) = P_\Gamma (E) \). Then \(E = E(\Gamma) + E(\Omega \setminus \Gamma) \).

2. Barrelledness

In the family \(B \) we are going to consider the family \(B_0 \) such that the locally convex vector space \(E \in B \) belongs to \(B_0 \) if given a sequence \(\{ f_n : n \in \mathbb{N} \} \in S_E \) there exists a barrelled space \((F, \tau) \) such that \(F \subset E \), \(\{ f_n : n \in \mathbb{N} \} \) is bounded in \((F, \tau) \) and \(\tau \) is a locally convex topology finer than the topology induced in \(F \) by the topology of \(E \).

Lemma 1 If \(E \in B_0 \) and \(Q \) is a barrel in \(E \) there exists a finite set \(\Delta \) (possibly empty) such that \(Q \) absorbs the unit ball of \(E(\Omega \setminus \Delta) \).

Proof. We assert that there is a countable set \(\Delta = \{ w_1, w_2, \ldots \} \) such that \(Q \) absorbs the closed unit ball of \(E(\Omega \setminus \Delta) \). In fact, if this were not true, there would be a \(f_1 \in E \) with \(\| f_1 \|_\infty = 1 \) and \(f_1 \notin Q \). By the hypothesis and the countability of \(\Delta_1 = supp(f_1) \) we deduce the existence of \(f_2 \in E(\Omega \setminus \Delta_1) \) with \(\| f_2 \|_\infty = 1 \) and \(f_2 \notin 2Q \). Once again, as the set \(\Delta_2 = supp(f_2) \) is countable there exists \(f_3 \in E(\Omega \setminus (\{ \Delta_1 \cup \Delta_2 \}) \) with \(\| f_3 \|_\infty = 1 \) and \(f_3 \notin 3Q \).

By induction we would obtain a sequence \(\{ f_n : n \in \mathbb{N} \} \in S_E \). Then, by hypothesis, there exists a barrelled space \((F, \tau) \) being \(F \subset E \) and \(\tau \) a locally convex topology finer than the topology induced in \(F \)
by the topology of \(E \), such that \(\{ f_n : n \in \mathbb{N} \} \) is bounded in \((F, \tau)\). Therefore \(Q \cap F \) is a 0—neighborhood in \((F, \tau)\) and then, by boundedness, there exists a \(p \) such that \(\{ f_n : n \in \mathbb{N} \} \subset pQ \). From this relation follows the contradiction \(f_p \in pQ \).

Therefore, there exists a countable set \(\Delta = \{ w_1, w_2, \ldots, w_n \} \) such that \(Q \) absorbs the closed unit ball of \(E(\Omega \setminus \Delta) \).

Now we are going to prove that there exists a natural number \(i \) such that \(Q \) absorbs the closed unit ball of \(E(\{ w_{i+1}, w_{i+2}, \ldots \}) \).

If this were not true, there would exist a sequence \(\{ f_n : n \in \mathbb{N} \} \) with \(f_n \in E(\{ w_{n+1}, w_{n+2}, \ldots \}) \), \(\| f_n \|_\infty = 1 \) and \(f_n \notin nQ \) for each \(n = 1, 2, \ldots \). But the sequence \(\{ f_n : n \in \mathbb{N} \} \in S_E \) and then, as in the preceding case, we would obtain a \(q \in \mathbb{N} \) such that \(\{ f_n : n \in \mathbb{N} \} \subset qQ \). This last inclusion contains the contradiction \(f_q \in qQ \), which proves that there exists a natural number \(i \) such that \(Q \) absorbs the closed unit ball of \(E(\{ w_{i+1}, w_{i+2}, \ldots \}) \).

Finally, we have obtained that if \(\Delta = \{ w_1, w_2, \ldots, w_i \} \) then \(Q \) absorbs the closed unit ball of \(E(\Omega \setminus \Delta) = E(\Omega \setminus \{ w_1, w_2, \ldots \}) + E(\{ w_{i+1}, w_{i+2}, \ldots \}) \). □

Proposition 1 Suppose that \(E \in B_0 \). Then \(E \) is barrelled if and only if \(X \) is barrelled.

Proof. If \(Q \) is a barrel in \(E \) then by Lemma 1, there exists a finite set \(\Delta \) such that \(Q \) absorbs the unit ball of \(E(\Omega \setminus \Delta) \). The barrel \(Q \) also absorbs the unit ball of the barrelled space \(E(\Delta) = X^\Delta \) (see [6, Proposition 1.1.13]). From the isomorphism between \(E \) and \(E(\Omega \setminus \Delta) \times E(\Delta) \) it follows that \(Q \) is a neighborhood of zero in \(E \).

Conversely, if \(E \) is barrelled and \(p \in \Omega \) then from the isometry between \(X \) and \(E(\{ p \}) = E / E(\Omega \setminus \{ p \}) \) it follows from [6, Proposition 1.1.9] that \(X \) is barrelled. □

A locally convex space \(E \) is unordered Baire-like ([22]) if given in \(E \) a countable covering \(\{ A_n, n \in \mathbb{N} \} \) of closed absolutely convex subsets of \(E \), there exists an \(A_n \) which is neighbourhood of zero in \(E \).

In the family \(B \) we are going to consider the family \(B_{ab} \) such that the locally convex vector space \(E \in B \) belongs to \(B_{ab} \) if given a sequence \(\{ f_n : n \in \mathbb{N} \} \in S_E \) there exists an unordered Baire-like space \((F, \tau)\) such that \(F \subset E \), \(\{ f_n : n \in \mathbb{N} \} \) is bounded in \((F, \tau)\), and \(\tau \) is a locally convex topology finer than the topology induced in \(F \) by the topology of \(E \).

Lemma 2 Let \(\mathcal{V} = \{ V_n : n \in \mathbb{N} \} \) be a sequence of absolutely convex and closed subsets of \(E \) such that \(E = \bigcup_{n \in \mathbb{N}} (V_n) \). Suppose that \(E \in B_{ab} \).

Then there exists a subfamily \(\mathcal{W} = \{ W_n : n \in \mathbb{N} \} \) of \(\mathcal{V} \) and a sequence \(\{ \Delta_n : n \in \mathbb{N} \} \) of finite subsets of \(\Omega \) such that, for every \(n \in \mathbb{N} \), \(E(\Omega \setminus \Delta_n) \subset (W_n) \) and
\[
E = \bigcup_{n \in \mathbb{N}} (W_n)
\]

Proof. First we are going to prove that there exists \(m \in \mathbb{N} \) and a countable subset \(\Delta_m \) such that \(E(\Omega \setminus \Delta_m) \subset (V_m) \).

In fact, if this were not true we would find a sequence \(\{ f_n : n \in \mathbb{N} \} \) of unitary vectors in \(E(\Omega) \) such that
\[
f_1 \notin (V_1)
\]
and
\[
f_n \in E(\Omega \setminus \bigcup_{i=1}^{n-1} \Delta_i) - (V_n), \quad n = 2, 3, \ldots
\]
where \(\Delta_i = \text{supp}(f_i) \) and \(\| f_i \|_\infty = 1 \) for each \(i \in \mathbb{N} \).

Then, by hypothesis, there exists an unordered Baire-like space \((F, \tau)\) such that \(F \subset E \), \(\{ f_n : n \in \mathbb{N} \} \) is bounded in \((F, \tau)\) and \(\tau \) is a locally convex topology finer than the topology induced in \(F \) by the topology of \(E \). Therefore, there exists a \(V_m \) that contains a neighborhood of zero in \((F, \tau)\), implying that the bounded
set \(\{ f_n : n \in \mathbb{N} \} \) is contained in \(\langle V_m \rangle \). The inclusion \(\{ f_n : n \in \mathbb{N} \} \subset \langle V_m \rangle \) contains the contradiction \(f_m \in \langle V_m \rangle \), proving our first observation.

Therefore, from this property and [22, Theorem 4.1] we have that there exists a subfamily \(\mathcal{W} = \{ W_n : n \in \mathbb{N} \} \) of \(V \) and a sequence \(\{ \Delta_n : n \in \mathbb{N} \} \) of countable subsets of \(\Omega \) such that \(E(\Omega - \Delta_n) \subset \langle W_n \rangle \), for each \(n \in \mathbb{N} \), and \(E = \bigcup_{n \in \mathbb{N}} \langle W_n \rangle \).

From this first property it follows that it is enough to prove the lemma for \(\Omega = \mathbb{N} \).

In this case we are going to prove that there exists some natural number \(m \) such that
\[
E(\mathbb{N} - \{1, 2, \ldots, m \}) \subset \langle V_m \rangle.
\]

If this property were not true we would find a sequence \(\{ f_n : n \in \mathbb{N} \} \) of unitary vectors in \(E(\mathbb{N}) \) such that
\[
f_n \in E(\mathbb{N} - \{1, 2, \ldots, n \}) - \langle V_n \rangle
\]
and we would have that the sequence \(\{ f_n : n \in \mathbb{N} \} \subset \mathcal{S}_E \). By hypothesis, there exists an unordered Baire-like space \((F, \tau)\) such that \(F \subset E \), \(\{ f_n : n \in \mathbb{N} \} \) is bounded in \((F, \tau)\) and \(\tau \) is a locally convex topology finer than the topology induced in \(F \) by the topology of \(E \). Exactly as in the preceding case we would obtain the contradiction \(f_p \in \langle V_p \rangle \), proving the second property we are looking for.

These two properties imply that there exists \(m \in \mathbb{N} \) and a finite subset \(\Delta_m \) such that
\[
E(\Omega - \Delta_m) \subset \langle V_m \rangle
\]
and, then, from [22, Theorem 4.1] it follows the lemma. ■

Proposition 2 Suppose that \(E \in \mathcal{B}_{ub} \). Then \(E \) is unordered Baire-like if and only if \(X \) is unordered Baire-like.

Proof. If \(E \) is unordered Baire-like and \(p \in \Omega \), then from the isometry between \(X \) and \(E(\{p\}) = E/E(\Omega - \{p\}) \) it follows from [6, Proposition 1.3.6] that \(X \) is unordered Baire-like.

Conversely, if \(X \) is unordered Baire-like and \(E \) were not unordered Baire-like, then there exists a sequence \(\{ V_n : n \in \mathbb{N} \} \) of absolutely convex and closed subsets of \(E \) such that
\[
E = \bigcup\{ V_n, n \in \mathbb{N} \}
\]
and each \(V_n \) is not a neighbourhood of zero in the barrelled space \(E \) (see Proposition 1). Then, by barrelledness, we have that
\[
E \not\subset \langle V_n \rangle, \quad n \in \mathbb{N}.
\]

From these relations and Lemma 2 we deduce that there exists a subsequence \(\{ W_n : n \in \mathbb{N} \} \) of \(\{ V_n : n \in \mathbb{N} \} \) and a sequence \(\{ \Delta_n : n \in \mathbb{N} \} \) of finite subsets of \(\Omega \) such that
\[
E = \bigcup_{n \in \mathbb{N}} \langle W_n \rangle
\]
\[
E \not\subset \langle W_n \rangle, \quad n \in \mathbb{N}
\]
\[
E(\Omega - \Delta_n) \subset \langle W_n \rangle, \quad n \in \mathbb{N}
\]

It is clear that we have for each \(n \in \mathbb{N} \) that
\[
E(\Delta_n) \not\subset \langle W_n \rangle
\]
and then there exists for each \(n \) some \(\delta_n \in \Delta_n \) such that
\[
E(\{ \delta_n \}) \not\subset \langle W_n \rangle.
\]
We consider the equivalence relation R in \mathbb{N} defined by the equality $\delta_m = \delta_n$ (i.e. mRn if $\delta_m = \delta_n$). This relation defines a partition $\{F_n, n \in \mathbb{P}\}$ in \mathbb{N}, where \mathbb{P} is a finite or countable subset of \mathbb{N}.

Let $\{w_n : n \in \mathbb{P}\}$ be the finite or countable subset of Ω such that $w_n = \delta_s$, being s an arbitrary element of F_s. We may rewrite the relations $E(\{\delta_n\}) \not\subset \langle W_n \rangle$, $n \in \mathbb{N}$, in the form:

$$E(\{w_n\}) \not\subset \langle W_n \rangle, \quad m \in F_n, \quad n \in \mathbb{P}.$$

We have that the space X is unordered Baire-like and that $E(\{w_n\})$ and X are isometric. Therefore

$$E(\{w_n\}) \not\subset \bigcup_{m \in F_n} \langle W_m \rangle, \quad n \in \mathbb{P}.$$

These non-inclusions enable us to choose $f_n \in E(\{w_n\}) - \bigcup_{m \in F_n} \langle W_m \rangle$, $\|f_n\|_\infty = 1$, for each $n \in \mathbb{P}$. Then:

$$\{f_n : n \in \mathbb{P}\} \not\subset \langle W_n \rangle, \quad \forall m \in \mathbb{N}$$

and the hypothesis $E \in \mathcal{B}_{ab}$ implies the existence of an unordered Baire-like space (F, τ), being $F \subset E$, $\{f_n : n \in \mathbb{P}\}$ bounded in (F, τ), and the topology τ is finer than the topology induced by E in F. Therefore, there exists some W_m containing a neighbourhood of zero in (F, τ). This implies the contradiction $\{f_n : n \in \mathbb{P}\} \subset \langle W_n \rangle$ which proves the proposition. □

3. **Barrelledness of class p**

Remember that a (Hausdorff) locally convex space E is barrelled of class p (or $p-$barrelled) if given a $p-$net $W = \{E_t : t \in T_p\}$ there is a $t \in \mathbb{N}^p$ such that E_t is barrelled and dense in E. It is not difficult to see that when E is $p-$barrelled there are many E_t, $t \in \mathbb{N}^p$, which are barrelled and dense in E, and the next definitions help us in obtaining the corresponding proof.

Definition 1 Let A be a subset of the set \mathbb{N} of natural numbers. We will say that A is a set of class 1 (of strict class 1) if A is infinite (if there exists $n_1 \in \mathbb{N}$ such that $A = \{n \in \mathbb{N} : n \geq n_1\}$).

A subset A of \mathbb{N}^p is a set of class p (of strict class p) if $A = \bigcup_{b \in B_1} \{b\} \times C_b$, being B_1 a set of class $p - 1$ (of strict class $p - 1$) and such that each C_b a set of class 1 (of strict class 1).

It is obvious that a subset A of class p (of strict class p) may be written as $A = \bigcup_{b \in B_k} \{b\} \times C_b$, being B_k a set of class k (of strict class k) and each C_b a set of class $p - k$ (of strict class $p - k$), with $1 \leq k \leq p - 1$.

Also an easy induction gives us the next result.

Proposition 3 Let A and B be two sets of \mathbb{N}^p, then:

1. If A is a set of strict class p and B is a set of strict class p (of class p), then $A \cap B$ is of strict class p (of class p).

2. A contains a set of strict class p if and only if $\mathbb{N}^p \setminus A$ does not contain a set of class p.

3. If B is a set of class p there exists a bijection φ from B onto \mathbb{N}^p such that φ preserves the lexicographic order.

The last statement implies that if $W = \{E_t : t \in T_p\}$ is a $p-$net in the $p-$barrelled space E and B is a set of class p then there is a $t \in B$ such that E_t is barrelled and dense in E, because the new numeration of $\{E_t : t \in B\}$ with the help of φ gives a new $p-$net in E. From this observation the next proposition follows easily.
Proposition 4 A (Hausdorff) locally convex space is barrelled of class p if and only if given a p-net $W = \{E_t : t \in \mathbb{T}_p\}$ there exists a set A_p of strict class p such that if $t \in A_p$ then E_t is barrelled and dense in E.

PROOF. Let $A = \{t \in \mathbb{N}^p : E_t$ is barrelled and dense in $E\}$. From the preceding observation it follows that $B = \mathbb{N}^p \setminus A$ cannot contain a set of class p. Then Proposition 3 statement 2, implies that A contains a set of strict class p.

If $t = (t_1, t_2, \ldots, t_i, \ldots, t_p) \in \mathbb{T}_p$ and E_t is barrelled and dense in E then, obviously, $E_{t_1 t_2 \ldots t_i}$ is barrelled and dense in E, for $1 \leq i \leq p - 1$ ([6, Proposition 1.1.10]).

Recall that a locally convex space E is Baire-like if given an increasing covering $\{A_n : n \in \mathbb{N}\}$ of E, being each A_n a closed absolutely convex subset of E, there exists an A_p which is a neighborhood of zero ([(18)]). It is obvious that suprabarrelled spaces are Baire-like, that Baire-like spaces are barrelled, that if $\{E_n : n \in \mathbb{N}\}$ is a linear increasing covering of the Baire-like space E there exists an E_n which is dense in E and that if F is barrelled and dense in the Baire space E then F is Baire-like ([6, Propositions 3.1.2 and 3.2.3]). Therefore a locally convex (Hausdorff) space E is p–barrelled if given a p-net $W = \{E_t : t \in \mathbb{T}_p\}$ in E it is verified one of the following conditions:

1. There exists $t \in \mathbb{N}^p$ such that E_t is barrelled and dense in E.
2. There exists $t \in \mathbb{N}^p$ such that E_t is Baire-like.
3. There is a set $A \subset \mathbb{N}^p$ of strict class p such that for each $t \in A$ we have that E_t is barrelled and dense in E.
4. There is a set $A \subset \mathbb{N}^p$ of strict class p such that for each $t \in A$ we have that E_t is Baire-like.

In the two last conditions we may omit the word strict.

Now let us suppose that $W = \{F_t : t \in \mathbb{T}_p\}$ is a p-net in E. Let $T_{n_1 n_2 \ldots n_p}$ be a barrel in $F_{n_1 n_2 \ldots n_p}$, $V_{n_1 n_2 \ldots n_p} = \bigcap_{i=1}^{n_p} Z_{n_1 n_2 \ldots n_p - 2^{i-1}}$, $S_{n_1 n_2 \ldots n_p} = \bigcap_{i=1}^{n_p} Z_{n_1 n_2 \ldots n_p - 2^{i-1}}$, $Z_{n_1 n_2 \ldots n_p} = \bigcap_{i=1}^{n_p} Z_{n_1 n_2 \ldots n_p - 2^{i-1}}$.

It is obvious that if A is a set of strict class p and $F \subset S_{n_1 n_2 \ldots n_p}$ for each $(n_1 n_2 \ldots n_p) \in A$ then we have that $F \subset S_{m_1}$, $F \subset S_{m_2}$, \ldots, $F \subset S_{m_1 m_2 \ldots m_p}$ and $F \subset S_{m_1 m_2 \ldots m_p}$ when $(m_1 m_2 \ldots m_p) \in A$.

Lemma 3 Let $W = \{F_t : t \in \mathbb{T}_p\}$ be a p-net in E and let $T_{n_1 n_2 \ldots n_p}$ be a barrel in $F_{n_1 n_2 \ldots n_p}$. Suppose that given a sequence $\{f_p : p \in \mathbb{N}\} \subset S_{n_1}$ for each $(n_1, n_2, \ldots, n_p) \in A$. Then there exists a countable set Δ (possibly empty) and a set B of strict class p such that $E(\Omega \setminus \Delta) \subset S_{n_1 n_2 \ldots n_p}$ for each $(n_1, n_2, \ldots, n_p) \in B$.

PROOF. We are going to prove the lemma by decreasing induction. First we will see that there is a countable set Δ (possibly empty) and a natural number n_1 such that $E(\Omega \setminus \Delta) \subset S_{n_1}$.

In fact, if this were not true then we may find $f_1 \in E$, with $\|f_1\|_\infty = 1$ and $f_1 \notin S_1$. The set $\Delta_1 = supp(f_1)$ is countable and from $E(\Omega \setminus \Delta_1) \not\subset S_2$ we deduce the existence of a $f_2 \in E(\Omega \setminus \Delta_1)$ with $\|f_2\|_\infty = 1$ and $f_2 \notin S_2$. Then put $\Delta_2 = supp(f_2)$ and from $E(\Omega \setminus (\Delta_1 \cup \Delta_2)) \not\subset S_3$ we may suppose that there exists $f_3 \in E(\Omega \setminus (\Delta_1 \cup \Delta_2))$ with $\|f_3\|_\infty = 1$ and $f_3 \notin S_3$. Continuing in this way we determine by induction a unitary sequence $\{f_n : n \in \mathbb{N}\}$ in E and a pairwise disjoint sequence $\{\Delta_n : n \in \mathbb{N}\}$ of countable subsets of Ω such that $\Delta_n = supp(f_n)$, $\|f_n\|_\infty = 1$ and $f_n \notin S_n$, for $n = 1, 2, \ldots$.

The sequence $\{f_q : q \in \mathbb{N}\} \subset S_E$. By hypothesis there exists a set A of strict class p such that $\{f_q : q \in \mathbb{N}\} \subset S_{n_1 n_2 \ldots n_p}$, for each $(n_1, n_2, \ldots, n_p) \in A$. We also have that $\{f_q : q \in \mathbb{N}\} \subset S_{n_1}$ if

372
(n_1, n_2, \ldots, n_p) \in A$. From this inclusion follows the contradiction $f_{n_1} \in S_{n_1}$, which proves our assertion.

Continuing with the induction let us suppose that there exists a set A_{h-1} of strict class $h-1$ and a countable set Δ such that $E(\Omega \setminus \Delta) \subset S_{n_1n_2\ldots n_h}$ for each $(n_1, n_2, \ldots, n_{h-1}) \in A_{h-1}$. Let A'_{h-1} and A''_{h-1} be a partition of A_{h-1} such that:

- A'_{h-1} is formed by the elements $b = (n_1, n_2, n_3, \ldots, n_{h-1})$ belonging to A_{h-1} for which we could determine a countable set Δ_b of Ω and a natural number m such that $E(\Omega \setminus \{\Delta \cup \Delta_b\}) \subset S_{n_1n_2\ldots n_{h-1}m}$.

- $A''_{h-1} = A_{h-1} \setminus A'_{h-1}$. If $(n_1, n_2, n_3, \ldots, n_{h-1}) \in A_{h-1}$, Δ' is a countable subset of Ω and $m \in \mathbb{N}$ we have that $E(\Omega \setminus \{\Delta \cup \Delta'\}) \not\subset S_{n_1n_2\ldots n_{h-1}m}$.

If A'_{h-1} contains a set B of strict class $h-1$ then we immediately obtain the next step of the inductive process. In fact, if $\Delta' = \bigcup_{b \in B} \Delta_b$ we have that for every $b \in B$ there exists a set I_b of strict class 1 such that $E(\Omega \setminus \{\Delta \cup \Delta'\}) \subset S_{n_1n_2\ldots n_{h-1}n_h}$ for every $(n_1, n_2, \ldots, n_{h-1}, n_h) \in \bigcup_{b \in B} \{b\} \times I_b = A_h$, being obvious that A_h is a set of strict class h.

If A'_{h-1} does not contain a set of strict class $h-1$ then A''_{h-1} contains a set B_{h-1} of strict class $h-1$ such that for each $(n_1, n_2, \ldots, n_{h-1}, n_h) \in B_{h-1} \times \mathbb{N}$ and each countable subset Δ'' of Ω we have that

$$E(\Omega \setminus \{\Delta \cup \Delta''\}) \not\subset S_{n_1n_2\ldots n_{h-1}n_h} \quad (1)$$

It is obvious that $B_{h-1} \times \mathbb{N}$ is a set of class h, whose elements can be enumerated in the following way $$\{(n_1(i), n_2(i), \ldots, n_{h-1}(i), n_h(i)) : i = 1, 2, 3, \ldots\}.$$ From (1) we deduce that $E(\Omega \setminus \Delta) \not\subset S_{n_1(1), n_2(1), \ldots, n_h(1)}$ which enables us to determine $g_1 \in E(\Omega \setminus \Delta)$, with $\|g_1\|_\infty = 1$ and $g_1 \notin S_{n_1(1), n_2(1), \ldots, n_h(1)}$.

If $\Delta'_1 = \text{supp}(g_1)$ we have by (1) that $E(\Omega \setminus \{\Delta \cup \Delta'_1\}) \not\subset S_{n_1(2), n_2(2), \ldots, n_h(2)}$. This relation indicates the existence of $g_2 \in E(\Omega \setminus \{\Delta \cup \Delta'_1\})$, with $\|g_2\|_\infty = 1$ and $g_2 \notin S_{n_1(2), n_2(2), \ldots, n_h(2)}$.

Now, if $\Delta'_2 = \text{supp}(g_2)$, we also have by (1) that $E(\Omega \setminus \{\Delta \cup \Delta'_1 \cup \Delta'_2\}) \not\subset S_{n_1(3), n_2(3), \ldots, n_h(3)}$.

Therefore, and after an obvious induction, we could obtain a sequence $\{g_i : i \in \mathbb{N}\}$ of unitary vectors in E with pairwise disjoint supports $\Delta'_i = \text{supp}(g_i)$, $i = 1, 2, 3, \ldots$, such that $g_i \notin S_{n_1(i), n_2(i), \ldots, n_h(i)}$.

The sequence $\{g_i : i \in \mathbb{N}\} \subset S_{n_1n_2\ldots n_h}$ and therefore there exists a set C of strict class p such that $\{g_i : i \in \mathbb{N}\} \subset S_{n_1n_2\ldots n_h}$ for $(n_1, n_2, \ldots, n_h, n_{h+1}, \ldots, n_p) \in C$. By Proposition 3 statement 1 there exists an index k such that $\{g_i : i \in \mathbb{N}\} \subset S_{n_1(k), n_2(k), \ldots, n_h(k)}$.

This relation contains the contradiction $g_k \in S_{n_1(k), n_2(k), \ldots, n_h(k)}$ that proves this lemma.

\textbf{Lemma 4} Let $W = \{F_t : t \in T_p\}$ be a p-net in the (Hausdorff) locally convex space E and let $T_{n_1n_2\ldots n_p}$ be a barrel in $F_{n_1n_2\ldots n_p}$. If F is a p-barrelled subspace of E then there exists a subset A of strict class p such that $F \subset S_{n_1n_2\ldots n_p}$ whenever $(n_1n_2\ldots n_p) \in A$.

\textbf{Proof.} Since $\{F \cap F_t : t \in T_p\}$ is a p-net in F, there is a set A of strict class p such that if $(n_1n_2\ldots n_p) \in A$ then $F \cap F_{n_1n_2\ldots n_p}$ is barrelled and dense in F. By density, $F \cap T_{n_1n_2\ldots n_p}$ is a neighborhood of zero in F. Therefore $F \subset S_{n_1n_2\ldots n_p}$ for every $(n_1n_2\ldots n_p) \in A$, which implies that $F \subset S_{n_1n_2\ldots n_p}$ whenever $(n_1n_2\ldots n_p) \in A$.

\textbf{Lemma 5} Let $W = \{F_t : t \in T_p\}$ be a p-net in the (Hausdorff) locally convex space E, let $T_{n_1n_2\ldots n_p}$ be a barrel in $F_{n_1n_2\ldots n_p}$, F a subspace of E and τ a locally convex topology in F finer than the induced by E. If (F, τ) is p-barrelled then there exists a set A of strict class p such that $F \subset S_{n_1n_2\ldots n_p}$ whenever $(n_1n_2\ldots n_p) \in A$.

373
Proof. Since \((F, \tau)\) is \(p\)-barrelled and \(\{F \cap T : t \in T_p\}\) is a \(p\)-net in \(F\), there is a set \(A\) of strict class \(p\) such that if \((n_1, n_2, \ldots, n_p) \in A\) then \(F \cap T_{n_1, n_2, \ldots, n_p}\) is barrelled and dense in \((F, \tau)\). Hence \(F \cap T_{n_1, n_2, \ldots, n_p}\) is a neighbourhood of zero in \(F \cap T_{n_1, n_2, \ldots, n_p}\) endowed with the topology induced by \(\tau\) and, by density, \(F \cap T_{n_1, n_2, \ldots, n_p}\) is a neighbourhood of zero in \((F, \tau)\). From \(F \cap T_{n_1, n_2, \ldots, n_p} \subset T_{n_1, n_2, \ldots, n_p}^E\) it follows that \(F \subset Z_{n_1, n_2, \ldots, n_p}\) for every \((n_1, n_2, \ldots, n_p) \in A\), which implies that \(F \subset S_{n_1, n_2, \ldots, n_p}\) whenever \((n_1, n_2, \ldots, n_p) \in A\). \(\blacksquare\)

Now, in the family \(B\) we are going to consider the subfamily \(B_p\) such that \(E \in B\) belongs to \(B_p\), if given the sequence \(\{f_n : n \in \mathbb{N}\} \subset S_E\) there exists a \(p\)-barrelled space \((F, \tau)\) such that \(\{f_n : n \in \mathbb{N}\} \subset F \subset E\) and \(\tau\) is a locally convex topology finer than the topology induced in \(F\) by the topology of \(E\).

Lemma 6 Let \(W = \{F : t \in T_p\}\) be a \(p\)-net in \(E\) and let \(T_{n_1, n_2, \ldots, n_p}\) be a barrel in \(F_{n_1, n_2, \ldots, n_p}\). If \(E \in B_p\) and \(X\) is a \(p\)-barrelled space then there exists a set \(A\) of strict class \(p\) such that \(E = S_{n_1, n_2, \ldots, n_p}\) when \((n_1, n_2, \ldots, n_p) \in A\).

Proof. As \(E \in B_p\), Lemma 5 guaranties that we may apply Lemma 3. Therefore it is enough to prove this lemma where \(\Omega = \mathbb{N}\) is a countable set. Therefore we are going to suppose that \(\Omega = \mathbb{N}\) and we will obtain the proof by decreasing induction.

Now we are going to prove that there exists a natural number \(n_1\) such that \(E = S_{n_1}\). In first place, we will find a natural number \(i\) such that \(E(\{i + 1, i + 2, \ldots\}) \subset S_i\). In fact if this were not possible we would determine a sequence \(\{f_i : i \in \mathbb{N}\}\) of unitary vectors such that \(f_i \in E(\{i + 1, i + 2, \ldots\}) \setminus S_i\) for \(i = 1, 2, \ldots\)

The relation \(\{f_i : i \in \mathbb{N}\} \subset S_E, E \in B\) and Lemma 5 implies that there exists a set \(A\) of strict class \(p\) such that \(\{f_i : i \in \mathbb{N}\} \subset S_{n_1, n_2, \ldots, n_p}\) when \((n_1, n_2, \ldots, n_p) \in A\). Therefore if \((n_1, n_2, \ldots, n_p) \in A\) we have that \(\{f_i : i \in \mathbb{N}\} \subset S_{n_1}\) implying the contradiction \(f_{n_1} \in S_{n_1}\).

This enables us to suppose that there exists a natural number \(i\) such that \(E(\{i + 1, i + 2, \ldots\}) \subset S_i\). Let \(\Delta = \{1, 2, \ldots, i\}\).

Since the space \(E(\Delta)\) is isometric to \(X^\Delta\) endowed with the \(l_\infty\) norm, we have that \(E(\{1, 2, \ldots, i\})\) is \(p\)-barrelled (see [6, Proposition 2.3]). Hence, there is a set \(B\) of strict class \(p\) such that \(X^\Delta \subset S_{n_1, n_2, \ldots, n_p}\) when \((n_1, n_2, \ldots, n_p) \in B\) (Lemma 4). Then for each \((m_1, m_2, \ldots, m_p) \in B\) we have that \(X^\Delta \subset S_{m_1}\). If \(n_1 \geq \max(i, m_1)\) then \(E = E(\{1, 2, \ldots, i\}) + E(\{i + 1, i + 2, \ldots\}) \subset S_i + S_{m_1} \subset S_{n_1} + S_{n_1} \subset S_{n_1}\).

Let us suppose that in the \((h - 1)\)-step of the inductive process we have determined a set \(A_{h-1}\) of class \(h - 1\) such that \(E(\mathbb{N}) = S_{n_1, n_2, \ldots, n_{h-1}}\) whenever \((n_1, n_2, \ldots, n_{h-1}) \in A_{h-1}\). Let \(b = (n_1, n_2, \ldots, n_{h-1}) \in A_{h-1}\). The sets \(S'_{n_1, n_2, \ldots, n_h}\), with \(n_i \in \mathbb{N}, h \leq i \leq s \leq p\) generate in a natural way the \(p - (h - 1)\)-net formed by the sets \(S'_{n_1, n_2, \ldots, n_h}\) with \(n_i \in \mathbb{N}\) for \(h \leq i \leq s \leq p\), given by

\[
S'_{n_1, n_2, \ldots, n_h} = S_{n_1, n_2, \ldots, n_h}
\]

and

\[
S'_{n_1, n_2, \ldots, n_{h-1}, n_h} = S_{n_1, n_2, \ldots, n_{h-1}, n_h} \cap S'_{n_1, n_2, \ldots, n_{h-1}, n_h - 1}
\]

with \(n_i \in \mathbb{N}, h \leq i \leq s \leq p\) and \(h \leq i \leq s - 1\).

In \(S'_{n_1, n_2, \ldots, n_p}\) consider the barrel \(T'_{n_1, n_2, \ldots, n_p} = T_{n_1, n_2, \ldots, n_p}^E(\mathbb{N}) \cap S'_{n_1, n_2, \ldots, n_p}\), being \(T_{n_1, n_2, \ldots, n_p}\) the barrel given in \(F_{n_1, n_2, \ldots, n_p}\) \((\subset S'_{n_1, n_2, \ldots, n_p} \subset S_{n_1, n_2, \ldots, n_p})\). Since \(T_{n_1, n_2, \ldots, n_p}\), being the first step of the inductive process to the \(p - (h - 1)\)-net

\[
\{S'_{n_1, n_2, \ldots, n_{h-1}, n_h} : n_i \in \mathbb{N} \text{ for } h \leq i \leq s \leq p\}
\]

we get a set \(I_{b}\) of class \(1\) such that \(E(\mathbb{N}) = S_{n_1, n_2, \ldots, n_{h-1}, n_h}\) for each \(n_h \in I_{b}\). The induction finishes with the observation that \(\bigcup_{b \in A_{h-1}} \{b\} \times I_b\) is a set \(A_h\) of strict class \(h\) and that \(E(\mathbb{N}) = S_{n_1, n_2, \ldots, n_{h-1}, n_h}\) when \((n_1, n_2, \ldots, n_h) \in A_h\). This induction proves the lemma. \(\blacksquare\)
Theorem 1 Let Ω be a non void set and suppose that $E \in \mathcal{B}_p$. The locally convex space E is p-barrelled if and only if X is p-barrelled.

PROOF. For $\omega \in \Omega$ we have that E and the product $E \left(\Omega \setminus \{\omega\}\right) \times E \left(\{\omega\}\right)$ with the supremum norm are isometric. Therefore, the spaces $E \left(\{\omega\}\right)$, and $E/E(\Omega \setminus \{\omega\})$ are isometric. Hence if E is p-barrelled, then X (isometric to $E \left(\{\omega\}\right)$) is p-barrelled according to [6, Proposition 3.2.12].

Conversely, if X is p-barrelled we are going to show by induction that E is p-barrelled.

Now we prove that E is suprabarrelled (1-barrelled). We know that E is Baire-like (see Proposition 1 and [6, Proposition 1.2.1]). Therefore if $\{F_n : n \in \mathbb{N}\}$ is a 1-net in E there is a n such that F_n is dense in E for $m \geq n$. If E were not suprabarrelled we would find in E a 1-net $\{F_n : n \in \mathbb{N}\}$ such that each F_n is dense and non barrelled. Let T_n be a barrel in F_n which is not neighborhood of zero in F_n. Set $V_n = T_n^c$ and $S_n = \bigcap_{m \geq n} (V_n)$. According to Lemma 6, there is some $S_n = E$, hence $E = \{V_n\}$ and the barrelledness of E (Proposition 1) yields that V_n is a neighborhood of zero in E. Then $T_n = V_n \cap F_n$ is a neighborhood of zero in F_n, a contradiction that enables us to establish that there exists a F_n which is barrelled.

Assuming that E is $(p-1)$-barrelled, $p \geq 2$, and that $\{F_t : t \in T_p\}$ is a p-net in E, then we can suppose that there is a set A_{p-1} of class $(p-1)$ such that F_t is barrelled and dense in E for $t \in A_{p-1}$. If $t \in A_{p-1}$ then F_t is Baire-like ([6, Proposition 1.2.1]), hence there is a set A_p of class p such that $F_{(n_p)}$ is dense in E for $(t, n_p) \in A_p$. Consequently, if E were not p-barrelled we may find a p-net $\{F_t : t \in T_p\}$ such that each F_t, for $t \in \mathbb{N}^p$, is not barrelled and dense in E. Let T_t be a barrel in F_t for $t \in \mathbb{N}^p$, which is not neighborhood of zero in F_t, for $t \in \mathbb{N}^p$. According to Lemma 6, there is a (n_1, n_2, \ldots, n_p) such that $S_{n_1 n_2 \ldots n_p} = E$ and then, by barrelledness (Proposition 1), $V_{n_1 n_2 \ldots n_p} = \bigcap_{t \in \mathbb{N}^p} F_t$ is a neighborhood of zero in $S_{n_1 n_2 \ldots n_p}$. This implies the contradiction that $T_{n_1 n_2 \ldots n_p} = V_{n_1 n_2 \ldots n_p} \cap F_{n_1 n_2 \ldots n_p}$ is a zero neighborhood in $F_{n_1 n_2 \ldots n_p}$. Hence E is p-barrelled. ■

If we apply Lemma 6 when $T_{n_1 n_2 \ldots n_p} = F_{n_1 n_2 \ldots n_p}$ we obtain the following property.

Let $W = \{F_t : t \in T_p\}$ be a p-net in E. If $E \in \mathcal{B}_p$ and X is a p-barrelled space, then there exists a set A of strict class p such that F_t is dense in E when $t \in A$.

This property simplifies the second part of the proof of Theorem 1. In fact, if X is p-barrelled and E were not p-barrelled we may find a p-net $\{F_t : t \in T_p\}$ such that F_t is not barrelled and dense in E, for each $t \in \mathbb{N}^p$. We obtain the same contradiction as in the end of the proof of Theorem 1.

4. Notes

When E is $c_0(\Omega, X)$ or bcs(Ω, X) and $\{f_n : n \in \mathbb{N}\}$ is a sequence of unitary vectors with disjoint supports, it is easy to prove that $\{\sum_{n=1}^{\infty} \alpha_n f_n : |\alpha_n| \leq 1, n = 1, 2, \ldots\}$ is a Banach disk.

If $\{f_n : n \in \mathbb{N}\}$ is a sequence of unitary vectors of E and there is a countable set $\{w_1, w_2, \ldots\} \subset \Omega$, such that $\text{supp}(f_n) \subset \{w_{n+1}, w_{n+2}, \ldots\}$ then it is obvious that $\{\sum_{n=1}^{\infty} \alpha_n f_n : \sum_{n=1}^{\infty} |\alpha_n| \leq 1\}$ is a Banach disk.

Therefore, $c_0(\Omega, X)$ and bcs(Ω, X) are p-barrelled if and only if X is p-barrelled.

References

Manuel L´opez Pellicer and Santiago Moll.
E.T.S.I.A. (Departamento de Matemática Aplicada).
Universidad Politécnica de Valencia.
Camino de Vera s/n.
E-46022 Valencia. Spain.
mlopezpe@mat.upv.es