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Some Key Research Problems in Automated Theorem Proving
for Hardware and Software Verification

Matt Kaufmann and J Strother Moore

Abstract. This paper sketches the state of the art in the application of mechanical theorem provers to
the verification of commercial computer hardware and software. While the paper focuses on the theorem
proving system ACL2, developed by the two authors, it references much related work in formal methods.
The paper is intended to satisfy the curiosity of readers interested in logic and artificial intelligence as to
the role of mechanized theorem proving in hardware and software design today. In addition, it points out
some of the key research topics in the area. These topics transcend any one particular theorem proving
system.

Algunos problemas claves de investigación en la demostración mecánica
de teoremas para la verificación de hardware y software

Resumen. En este art´ıculo se resume el estado del arte de la aplicaci´on de demostradores mec´anicos
de teoremas a la verificaci´on de hardware y software comerciales. Aunque el trabajo se centra en el
sistema de demostraci´on de teoremas ACL2, que desarrollaron los autores, se citan trabajos en m´etodos
formales muy relacionados. Este art´ıculo tiene por objetivo satisfacer la curiosidad de aquellos lectores
que se interesan por la l´ogica y la inteligencia artificial en lo relativo al papel que tiene la demostraci´on
mecánica de teoremas en el dise˜no de software y hardware hoy en d´ıa. Por otra parte, se se˜nalan algunos
de los temas claves de investigaci´on en este campo.́Estos temas van m´as allá de las capacidades de
cualquier sistema de demostraci´on de teoremas particular.

1. Applied Formal Logic

Until the invention of the digital computer, there were few applications of formal mathematical logic outside
the study of logic itself. In particular, while many logicians investigated alternative proof systems, studied
the power of various logics, and formalized the foundations of mathematics, few people used formal logic
and formal proofs to analyze the properties of other systems.

The lack of applications can be attributed to two considerations: (i) the very formality of formal logic
detracts from its clarity as a tool of communication and understanding, and (ii) the “natural” applications
of mathematical logic in the pre-digital world were in pure mathematics and there was little interest in
the added value of formalization. Both of these considerations changed with the invention of the digital
computer. The tedious and precise manipulation of formulas in a formal syntax can be carried out by
software operating under the guidance of a user who is generally concerned more with the strategic direction
of the proof. As for artifacts to study, digital computers are intended to be abstract discrete state machines
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and such machines and their software are naturally formalized in mathematical logic. Given the formal
descriptions of such systems, it is then natural to reason about the systems by formal means. And with the
aid of software to take care of the myriad details, the approach can be made practical. Indeed, given the cost
of bugs and the complexity of modern hardware and software, these applications cry out for mechanical
analysis by formal mathematical means.

To drive these points home, consider the famous Intel Pentium “FDIV” bug. In an article entitled
“Circuit Flaw Causes Pentium Chip to Miscalculate, Intel Admits,” theNew York Times on November
11, 1994, reported “An elusive circuitry error is causing a chip used in millions of computers to generate
inaccurate results.” Three months later, on January 23, 1995, theEE Times reported “Intel Corp. last week
took a $475 million write-off to cover costs associated with the divide bug in the Pentium microprocessor’s
floating-point unit.” In part due to the publicity surrounding the Pentium FDIV, Advanced Micro Devices,
Inc., an Intel competitor, decided to carry out a machine checked proof of the correctness of the FDIV
microcode in theAMD-K5 processor, which was slated for release in the summer of 1995.1 The proof,
constructed under the direction of this paper’s authors and Tom Lynch, a member of the design team for
the floating point unit, was completed 9 weeks after the effort commenced. About 1200 definitions and
theorems were written by the authors and accepted, after appropriate proofs were completed by the ACL2
[27, 6] theorem prover. Among the first theorems written was one that allowed the theorem prover to rewrite
� � � as��, which was proved by appeal to the axioms of addition and multiplication over the rationals.
The last lemma proved stated that the algorithm implemented by the FDIV microcode implemented floating
point division as specified by the IEEE standard [41]. The formal expression of that result, in the logic used,
was as follows.

(defthm FDIV-divides
(implies (and (floating-point-numberp p 15 64)

(floating-point-numberp d 15 64)
(not (equal d 0))
(rounding-modep mode))

(equal (FDIV p d mode)
(round (/ p d) mode))))

The formula may be paraphrased as follows: If� and� are floating-point numbers with 15-bit exponents
and 64-bit significands,� is non-0, and���� is an IEEE rounding mode, then the output of theFDIV
algorithm when applied to�, �, and����, is the infinitely precise��� rounded to a floating point number
as specified by����. Among the 1200 definitions and theorems are formalizations of the unfamiliar
concepts just mentioned; these concepts are all described in the IEEE standard [41]. A description of the
machine checked proof of the theorem above may be found in [34].

Machine-checked formal proofs of hardware designs are still not commonplace. But they are increas-
ingly common. For example, register-transfer level models of the elementary floating point operations
for theAMD Athlon�� processor have been mechanically checked to be IEEE compliant [38, 39] using
ACL2. These proofs were carried out before that processor was first fabricated. The initial proof attempts
uncovered bugs in the design – bugs that had survived extensive testing. Intel has used HOL Light [22, 21]
and other tools [1] to verify various algorithms and hardware designs for the IA-64 architecture. In addition
to AMD and Intel, IBM, Sun, Rockwell and other manufacturers are advancing, applying, and supporting
research into theorem proving. Among the mechanical theorem proving systems used to prove commer-
cially interesting theorems about hardware designs, in addition to ACL2, are Coq [18], HOL [20], HOL
Light [22], Isabelle [36], and PVS [37].

These systems vary quite a lot. Collectively they support several different mathematical logics and a
wide variety of proof techniques and user interfaces. It is best to think of all of these systems asproof
checkers: the user describes a particular proof and the system checks that it is correct. Proofs can be
“described” a variety of ways, e.g., by giving the inference steps, by specifying tactics or strategies to try,
by stating the “landmark” subgoals or lemmas to establish, etc. Often, combinations of these styles are

1AMD, the AMD logo, AMD Athlon, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.
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used within a single large proof project. But all proofs of commercially interesting theorems completed
with mechanical theorem proving systems have one thing in common: they require a great deal of user
expertise and effort.

The question we address in this paper is “how can the demands on the user be reduced?” More pre-
cisely, what are the key research problems in automatic theorem proving, as it applies to establishing the
correctness of computer hardware and software?

2. Setting the Stage

If we are mainly interested in the correctness of computing systems, one might ask whether a mechanical
theorem prover is an appropriate tool to use, since the systems being studied are always finite-state. Why not
focus instead on finite state methods such as model checking [19, 14, 15], binary decision diagrams (BDDs)
[12], and satisfiability solvers [44]? Such methods are surprisingly effective for a surprisingly large number
of applications. Machine capacities and automatic abstraction and reduction techniques make it possible to
handle system descriptions with very large state spaces. For example, the number�� ��� is cited in [16]. This
does not mean today’s checkers explore����� states explicitly! It means they can sometimes verify some
properties of systems with that many states, by using appropriate representation, abstraction and reduction
techniques. Consider a system with 8-bits of state: the state space is of size��. But suppose the property
being checked is the conjunction of two properties, one of which is a function of the first three bits and the
other of which is a function of the last two bits. Then the first property can be checked by visiting just� �

states and the second by visiting�� states. So in this example a total of twelve states must be considered to
verify a property of a system with 256 states.

Today’s satisfiability checkers can often recognize propositional tautologies containing hundreds of
thousands of propositional symbols. However, reducing finite problems to propositional form often intro-
duces many new variable symbols and so the capacity of SAT solvers can be rapidly consumed.

The previously shown theorem about FDIV could be checked by running the microcode on about�� ��

examples and checking it. As far as we know, all such examples would have to be checked – no reduction
techniques are obvious. Assuming no reduction techniques are applicable (a good research question) and
assuming that the simulator could check one example in one femtosecond (����� seconds) (the cycle time
of a 1 petahertz processor) – an extremely unlikely assumption since it will take many cycles to simulate
the microcode of any yet-to-be-built processor – it would still take more than�� � years.

While finite state tools should not be ignored or underestimated, typical hardware and software systems
contain many more states than can be practically explored by exhaustive methods. Detailed application-
specific formal analysis is required to invent appropriate abstraction and reduction techniques. That is the
essence of the theorem proving problem.

Given our interest in theorem proving, another question might be “how does the choice of application
affect the key research problems?” That is, what aspects of hardware and software verification stress the-
orem proving technology? In hardware and software verification one is almost constantly dealing with a
mixture of inductively defined mathematical objects of essentially arbitrary size: the natural numbers, the
integers, sequences, trees, graphs, etc. Thus, techniques based entirely on instantiating, chaining and sub-
stitution of equals for equals such as resolution (see, for example, the Otter System [43]) and term rewrite
systems ([26]) unless those systems are augmented with some inductive capability and the techniques for
dealing with the pervasive presence of integer arithmetic.

Another characteristic of hardware and software verification is the large size of the formal system de-
scriptions. While in traditional mathematics the definitions of the relevant concepts might take a few lines
or at most a few pages of formulas, in this area the relevant concepts may consume hundreds of pages.
A device as complicated as a single floating point unit, much less a microprocessor or operating system,
cannot be accurately described in a few well-chosen lines of formalism. When a complicated digital artifact
is so-described it begs the question: does the artifact actually conform to this simple description? And to
answer that question one must describe the artifact in more detail so that, ultimately, one can recognize
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the actual implementation in the lowest level formal description. The proofs themselves are also large:
hundreds or thousands of formally proved lemmas are assembled to reach the ultimate conclusion. Me-
chanically produced intermediate subgoals in these proofs can also be extremely large; in the verification
of a Motorola digital signal processor design [11] some of the formulas produced (and proved) required 25
megabytes to print. (Such subgoals typically contain duplicated expressions: the propositional tautology
�� � takes twice as many bytes to print as�!)

Because we are the authors of ACL2, examples from that system will be used to illustrate the research
problems we identify. But the problems transcend any one particular theorem proving system.

3. A Little Background on ACL2

“ACL2” stands for “A Computational Logic for Applicative Common Lisp.” It is the name of a program-
ming language, a first-order mathematical logic based on recursive functions, and a mechanical theorem
prover for that logic. We describe each component briefly. See [27] or the documentation, source code
and examples at the URL [30] for details. We then cite a few example applications to establish the general
applicability of the system.

3.1. The Programming Language

As a programming language, ACL2 can best be thought of as an applicative (“side-effect free” or “func-
tional”) subset of Lisp. The choice of a functional programming language as the basis for a mathematical
logic of computation was McCarthy’s invention [33] and was one of the original motivations behind the
design of Lisp in the late 1950s and early 1960s. That Lisp is one of the oldest programming languages still
in everyday use is a testament to its elegance and expressive power.

We assume the reader is familiar with the basic prefix syntax of Lisp. For example,(+ 3 (f x y))
is the Lisp notation for� � ���� 	�.

ACL2 supports the following basic data types: the complex rationals (including the rationals, integers
and naturals as subsets), characters, symbols, strings, and ordered pairs. The symbolst andnil are
used for the Boolean values “true” and “false.” Lists are represented by ordered pairs, with the successive
elements of the list in thecar (“head”) of the successive pairs found in thecdr (“tail”). The cdr-chain
in lists are typically terminated with the non-pairnil. Ordered pairs are constructed by the function
cons. An example constant is’(1 "see Doc" (A . 2/3)). This list contains three items, the
natural number1, a string, and an ordered pair whosecar is the symbolA and whosecdr is the rational
number2/3. This constant could be constructed with(cons 1 (cons "see Doc" (cons (cons
’A 2/3) nil))).

Systems are built by defining functions. No iteration primitives are provided; recursion is used exten-
sively. Here is a definition of the functionlen for determining the length of a list.

(defun len (x)
(if (endp x)

0
(+ 1 (len (cdr x)))))

This expression defineslen to be a function of one argument,x, so that ifx is empty (not a cons pair), its
len is 0 and otherwise itslen is one more than thelen of thecdr of x. If this definition were made,
then the user could type(len ’(a b c)) and the system would evaluate it and print3.

ACL2 includes versions of almost all of the function symbols in Common Lisp [42] that are free of
side-effects and global variables and are specified in an implementation-independent fashion. We say “ver-
sions” because we restrict the domains of some of our functions so that their definitions agree with the
corresponding Common Lisp program on the restricted domain. ACL2 provides a means of specifying and
verifying that functions operate on their intended domains (see the discussion of “guards” in [27]).
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We also support the definition of new constant symbols, new “symbol packages” (which allow users to
control name spaces), and macros. The latter are like functions but produce values that are then treated as
expressions. Macros thus permit the user to extend the syntax.

Because it is a functional programming language, ACL2 is executable: terms composed entirely of
defined functions and constants can be reduced to constants by Lisp calculation. This is very important to
many applications. For example, ACL2 models of floating point designs have been executed on millions of
test cases to “validate” the models against industrial design simulation tools, before subjecting the ACL2
models to proof.

3.2. The Logic

As a mathematical logic, ACL2 may be thought of as first-order predicate calculus with equality, recursive
function definition, and mathematical induction. The primitives of applicative Common Lisp are axiom-
atized. For example, one axiom is(car (cons x y)) � x and another isx �� nil � (if x y
z) � y. After axiomatizing the basic data types, including natural numbers, integers, rationals, complex
rationals, ordered pairs, symbols, and strings, a representation of the ordinals up to
 � is introduced and the
ordering relation “less than” on such ordinals is defined recursively.

The principle of mathematical induction, in ACL2, is then stated as a rule of inference that allows
induction up to
�. To prove a conjecture by induction one must identify some ordinal-valued measure
function. The induction principle permits one to assume inductive instances of the conjecture being proved,
provided the instance has a smaller measure according to the chosen measure function.

A principle of definition is also provided, by which the user can extend the axioms by the addition of
equations defining new function symbols. To admit a new recursive definition, the principle requires the
identification of an ordinal measure function and a proof that the arguments to every recursive call decrease
according to this measure. Only terminating recursive definitions can be so admitted under the definitional
principle. (“Partial functions” can be axiomatized; see [32].)

While the syntax does not permit one to write explicit quantifiers (“�” and “�”) the power of quantifi-
cation is provided via a definition-like principle that permits the introduction of a new function symbol (a
“Skolem function”) whose value satisfies a given predicate if such a value exists.

A mechanism for introducing new function symbols constrained to satisfy arbitrary formulas is pro-
vided, but the mechanism requires a proof that at least one such function exists.

A “second order instantiation” derived inference rule permits one to replace the function symbols in
any theorem by other function symbols, provided the latter can be proved to satisfy the constraints on the
former.

For more details of the logic, see [27, 28, 29].

3.3. The Theorem Prover

The ACL2 theorem prover is an example of the so-called Boyer-Moore school of inductive theorem proving
[5, 6]. ACL2 is, in fact, the successor of Nqthm [9], coded by Kaufmann and Moore (with some early help
by Boyer) to support applicative Common Lisp and largely coded within that same applicative language. It
is an integrated system of ad hoc proof techniques that include simplification, generalization, induction and
many other techniques.

Simplification is, however, the key technique. Thetypewriter font keywords below refer to online
documentation topics accessible from the ACL2 online user’s manual [30]. The simplifier includes the use
of (1) evaluation (i.e., the explicit computation of constants when, in the course of symbolic manipulation,
certain variable-free expressions, like(expt 2 32), arise), (2) conditional rewrite rules (derived from
previously proved lemmas), cf.rewrite, (3) definitions (including recursive definitions), cf.defun,
(4) propositional calculus (implemented both by the normalization of if-then-else expressions and the use
of BDDs), cf. bdd, (5) a linear arithmetic decision procedure for the rationals (with extensions to help
with integer problems and with non-linear problems [23]), cf.linear-arithmetic, (6) user-defined
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equivalence and congruence relations, cf.equivalence, (7) user-defined and mechanically verified
simplifiers, cf.meta, (8) a user-extensible type system, cf.type-prescription, (9) forward chaining,
cf. forward-chaining, (10) an interactive loop for entering proof commands, cf.proof-checker,
and (11) various means to control and monitor these features including heuristics, interactive features, and
user-supplied functional programs.

The induction heuristic, cf.induction, automatically selects an induction based on the recursive
patterns used by the functions appearing in the conjecture or a user-supplied hint. It may combine various
patterns to derive a “new” one considered more suitable for the particular conjecture. The chosen induc-
tion scheme is then applied to the conjecture to produce a set of new subgoals, typically including one or
more base cases and induction steps. The induction steps typically contain hypotheses identifying a par-
ticular non-base case, one or more instances of the conjecture to serve as induction hypotheses, and, as
the conclusion, the conjecture being proved. The system attempts to select an induction scheme that will
provide induction hypotheses that are useful when the function applications in the conclusion are expanded
under the case analysis provided. Thus, while induction is often considered the system’sforte most of the
interesting work, even for inductive proofs, occurs in the simplifier.

All of the system’s proof techniques are sensitive to the database of previously proved rules and, if any,
user-supplied hints. By proving appropriate theorems (and tagging them in pragmatic ways) it is possible
to make the system expand functions in new ways, replace one term by another in certain contexts, consider
unusual inductions, add new known inequalities to the linear arithmetic procedure, restrict generalizations,
etc.

3.4. A Few Applications

ACL2 has been applied to a wide range of commercially interesting verification problems. We recommend
visiting the ACL2 home page [30] and inspecting the links on Tours, Demo, Books and Papers, and for the
most current work, The Workshops and Related Meetings.

Among the items there documented are floating point proofs for AMD and IBM hardware, including
theAMD-K5 processor,AMD Athlon�� processor, and IBM Power4�� processor, the verification that a
pipelined microarchitecture for a Motorola digital signal processor implements a certain microcode engine
when a certain predicate relating to the absence of pipeline hazards approves of the microcode [11], the
verification of microarchitectures for Rockwell avionics microprocessors, the verification of security prop-
erties for an IBM secure co-processor, the verification of a post-compiler checker for an on-board railroad
control system for Union Switch and Signal, the verification of a proof-checker used by Otter to certify its
proofs, and the verification of properties of Java bytecode and the Java Virtual Machine.

Many of these projects require the definition within ACL2 of one or more interpreters for other lan-
guages (e.g., the JVM is formalized as an interpreter [35, 31]). Proving theorems about such interpreters,
especially establishing relationships between such interpreters, is a key aspect of system verification.

4. Key Research Problems

We tend to give relatively few references in this section. Most of our references are of historic note only.
Anybody undertaking research on these topics should search the web (at least) for the latest developments.

4.1. Invention of Lemmas and New Concepts

The fundamental problem in automatic theorem proving is, of course, the theorem proving problem itself:
how can a given formula be constructed from the axioms by the rules of inference? In a logic supporting
induction this is crucial. The top-level theorems in which we are interested are typically of insufficient
generality to permit inductive proofs. Instead, inductively provable lemmas must be formulated and proved.
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For example, given the recursive definition of list concatenation (“append”)(defun app (x y)
(if (endp x) y (cons (car x) (app (cdr x) y)))) try to prove(equal (app (app
a a) a) (app a (app a a))). To prove this theorem one must distinguish some of the variable
symbols. The obvious lemma is the associativity ofapp but a weaker lemma will suffice. How do we find
such lemmas?

More often, new concepts must be invented to prove theorems by induction. For example, suppose
isort is defined to be the insertion sort function. Then it is a theorem that(isort (isort a)) is
(isort a).2 However, the proof that springs to mind is thatisort is stable, i.e., ifx is ordered then
(isort x) is x, and that(isort a) is ordered. These two lemmas require the introduction of the
concept of “ordered.” We call “ordered” a “eureka” concept. Why did it spring to mind? How do we know
how to define it?

To see how common the problem is, take any interesting mechanically checked theorem in an inductive
setting, and compare the number of defined concepts used in the statement of the theorem (including such
“ancestral uses” as when a concept is used in a definition of a concept used in the theorem) with the total
number of defined concepts developed in the proof. If they are not the same, a eureka concept was probably
discovered.

This problem is widely recognized and has received some study. One might start by considering [5, 2,
13, 24, 25]. The problem is closely related to the invention or completion of inductive invariants to prove
code correct, the characterization of the reachable states of a system, and abstraction/refinement methods.
See the work on abstract interpretation, which was first described in [17]. There is enormous interest in
these problems because of the state explosion problem in model checking. See for example the SLAM
project [3].

4.2. Examples and Counterexamples

How can a machine productively use examples to guide the discovery of a proof? How can a machine pro-
ductively use failed proofs to guide the discovery of counterexamples? When we (the authors) try to prove
formulas we are not sure are theorems, we often spend considerable time looking for counterexamples.
When the proof attempt is stymied, i.e., when it seems impossible to show that a subgoal is valid, we may
switch to finding a counterexample. Often, just when we think we have a counterexample, careful testing
shows that the formula is still true under that assignment. This often exposes a subtle relation between the
hypotheses that, once recognized, can be exploited to move the proof forward. On the other hand, when we
find a counterexample for a subgoal it may mean we are pursuing a bad proof strategy or it may mean our
main goal is not a theorem. In the first case, the example helps guide subsequent backtracking and search;
in the second case, the counterexample often helps us reformulate the main theorem.

There has been enormous investment by industry in test suites for hardware and software designs. Those
test suites could, conceivably, provide examples to help guide formal proofs. Let us say a formula is
“plausible” if it evaluates to true on many examples. Clearly, before trying to prove a formula, one might
first check that it is plausible. A more sophisticated definition of plausibility is actually required. The non-
theorem “ifx is 123 thenx is even” is plausible over an arbitrarily large number of examples – as long
as123 is not among them! To test plausibility one must have the ability to generate or find test cases that
satisfy the hypotheses so that one can test the conclusion. But even so, how can this guide search? Suppose
you are trying to prove(Q x) and you have two lemmas, one that says(P x) implies(Q x) and another
that says(R x) implies(Q x). To apply such a lemma you must “backchain” to establish its hypothesis.
But if your tests establish that(P x) is not plausible (i.e., one of your examples falsifies(P x)) that
branch of the search space can be pruned. SAT solvers make such use of propositional counterexamples.

Another common use of examples in ordinary technical work is related to the comprehension and inven-
tion of ideas. Generalizing from examples seems to be an exceptionally well-developed skill among many

2In all of our examples, we ignore “type-like” hypotheses. Theisort identity to which we just alluded is in fact an identity in
ACL2, for all a. But some readers may be more comfortable restrictinga to proper lists of sortable objects, i.e., whatever objects
isort can compare; the essential problems are the same.
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people. How many times have conference speakers, for example, presented a new idea or methodology by
using it to solve an example problem? How many times have professors presented “proofs by example”?
Often, when confronted with the choice between a formal description of a new concept and a few examples
of it, we choose to look at the examples early.

Probably because of this phenomenon, some people prefer to think about the creation of new lemmas
and concepts by looking at examples. For example, defineffib as follows.

(defun ffib (i j k)

(if (zp i)

j

(if (equal i 1)

k

(ffib (- i 1) k (+ j k)))))

Then(ffib n 1 1) is the n�� Fibonacci number, as that concept is traditionally defined,

(defun fib (i)

(if (zp i)

1

(if (equal i 1)

1

(+ (fib (- i 1)) (fib (- i 2)))))).

Prove(ffib n 1 1) = (fib n). To do so requires a generalization. Find it. Some people find it
helpful to run a few examples of(ffib n i j) with i andj different from1. Often, after creating a
purported generalization, people use examples to “confirm” its plausibility as a theorem.

4.3. Analogy, Learning, and Data Mining

“Proof by analogy” is a commonly used phrase in mathematical parlance. Often it means that the proof of
the indicated lemmas follows some general pattern exemplified by the earlier proof. More often it means
“Surely a proof can be constructed along those lines (but I haven’t actually done it).” There has been some
work on this [10].

A user of ACL2 frequently has the sense that the system is repeating old proofs with new symbols. This
can be a sign that some earlier lemma was not sufficiently general. But often it is extremely tedious to
produce the sufficiently general result. Indeed, people seem often to look for the precise general statement
of a result by proving special cases (here we may see the important role that examples play in human
reasoning). If the proof engine can be made to prove rapidly all the special cases one ever needs, then it
is often more efficient never to state and prove the general result. However, it would be nice to provide an
interface so that the user could signify this is what is happening and so guide ACL2 to follow the old proof
even though ACL2’s database might now suggest completely different attacks on the problem.

In a similar vein, can a theorem prover not recognize when an analogy might be appropriate? Or better
yet, can it not learn from past behavior when to revert to a given proof pattern or plan?

Finally, note that users are often distributed and each has his or her database of definitions and lemmas.
Therefore it would be extremely helpful to build, first, a tool that would allow a user to ask a search engine
“has anybody ever proved thatgcd distributes over multiplication?” and get an answer like “User smith
defined the functiongd which is reminiscent of yourgcd and proved that it distributes over multiplication
of rationals. The definition ofgd and the theorem follow.” Once such an interactive search engine were in
use, it would be challenging to try to get the theorem prover to try to search for and speculatively import
such results so proofs could draw on the larger body of work of the whole community.
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4.4. An Open Architecture

How can we design a theorem prover that allows the user easy but sound access to the inner workings of
the system? Experienced ACL2 users occasionally want to reconfigure ACL2, e.g., so that it skips some
proof technique. Examples include the desire to skip ACL2’s “pre-processing” step, to skip or delay the
use ofIF-normalization, or to rewrite the various parts of a formula in a different order. The authors of
ACL2 have provided a plethora of hints that allow the selective disabling of certain commonly problematic
heuristics. But the result feels somewhat ad hoc. It might be better if the system were designed in a way that
the user could easily program it, without worrying about soundness. The use of tactics and tacticals in HOL
[20] and Nqthm’s metafunctions [7] were suggestive — indeed, ACL2’s “proof-checker” utility has a form
of tactics and tacticals, and ACL2 has a sophisticated capability for metatheoretic reasoning — but we seek
an entirely open architecture that would allow easy seamless reconfiguration of the basic proof engine. For
example, ACL2 users have expressed an interest in more control of the distribution of calls of the function
if, the order of rewriting literals in a clause, and the handling of cases.

A suitably ambitious attempt at providing an open architecture might be the SAL [40], which includes
the design of a language for describing the combination of proof techniques. Another valuable resource is
the “QED Quo Pro” (www.qpq.org) project.

4.5. Parallel and Collaborative Theorem Provers

We have earlier mentioned (subsection 4.3.) the idea of a prover speculatively drawing on the results proved
by other users of the system. Still more challenging is drawing on the capabilities of other theorem provers.

How can we parallelize a single theorem prover? The theorem proving task is embarrassingly parallel.
Often, ACL2 spawns thousands of subgoals, each of which must be proved. Since each is attacked in
the same logical theory, each could be farmed out to a copy of ACL2 loaded with the current theory.
Interprocess communication could be minimized by having each processor initially loaded with the current
database. Then, all that would be required to spawn a new subgoal would be to transmit its formula to a free
processor and await a brief success or failure signal. Such parallelization is currently being investigated
by our group in at the University of Texas at Austin. But finer grained parallelization is also possible.
Why not try multiple induction schema simultaneously? Why not try alternative rewrite theories or other
simplification strategies simultaneously? Why not simultaneously attempt to relieve all the hypotheses of a
lemma when backchaining? Why not rewrite all argument subexpressions of an expression simultaneously?
The answer to many of these questions is “because you would almost certainly swamp the communication
network and tie up many processors with pointless work when you could save them for necessary work.”
But the judicious non-explosive use of parallelism is appealing and, we believe, practical in the theorem
proving context.

How can several theorem provers and/or decision procedures be combined so that they can collectively
prove theorems more automatically than any one of them could prove in isolation? There is much work in
the combination of theorem proving with model checking and with SAT solving. Experience [8] shows that
combining powerful heuristic theorem provers with decision procedures is very difficult. The problem is
that it is impossible to know what problems can be solved by the decision procedure, so most of the time it
reports failure. Thus, the time it takes to interact with another tool is often dominated by the time it takes to
convert a problem into the representation used by the “foreign” tool. This argues for the design of tools that
sacrifice internal stand-alone efficiency for ease of communication. But no one would use such a tool except
as part of a larger collaborative system (if a more efficient stand-alone tool were known to be sufficient).

Even more problematic is the differences between the logics supported by different theorem provers.
For example, PVS and ACL2 have different syntax. To use PVS from within ACL2, we would have to
build a translation tool that could translate formula� of ACL2 into some formula� � of PVS such that if
�� is a theorem of PVS then� is a theorem of ACL2. To make this precise, the theory (i.e., definitions,
lemmas, etc.) must also be exported as well. Because of the differences in the two logics, such transla-
tors are extremely difficult to define correctly and will almost certainly be only partial. The likelihood of
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success by the foreign system is low, thus increasing the importance of fast translation and well-considered
submissions. But these issues have the effect of opening up the “black box,” i.e., to use PVS to help ACL2,
ACL2 would benefit from being able quickly (1) to predict when PVS will succeed and (2) to generate the
appropriate proof scripts for success.

This line of reasoning points to meta-tools with which complex system expectations, behaviors and
capabilities can be described and learned. Note also that the many of the problems in this section on
collaborative theorem proving strategies might impact the previous section on learning and data mining.
For example, perhaps an ACL2 user could make use of the fact that a PVS user has proved a certain lemma.

4.6. User Interface and Interactive Steering

Until the artificial intelligence problem is solved, human interaction will be important in theorem proving.
In fact, we do not think this need be a major problem. Designers and programmers are much more willing
to explain why their designs work than to be bothered by a lot of mindless details (unless a bug is indicated).
How can a theorem prover present itself to its users (who are possibly distributed and working collabora-
tively) so that it (1) is often effective while being fully automatic, (2) presents its users with a manageable
amount of information, (3) presents its users with sufficient information to allow them to help it when it
seems to be stymied, and (4) accepts real-time interactive advice from its users without forcing them to take
over low level control of the entire proof effort?

A related issue is the challenge of integrating automated or interactive reasoning engines in more
routinely-used tools such as compilers, CAD systems, databases, etc. Here the interface challenge is to
cast the user-supplied guidance into a form (e.g., type declarations or runtime assertions) acceptable to the
user of the high-level tool and to limit the expressible problems so that the reasoning engine succeeds often
enough to be perceived as adding value.

4.7. Education

Until the artificial intelligence problem is solved, the hardware and software industry will need people
trained in the use of mechanized reasoning tools. How can theorem proving be taught effectively at the
undergraduate level?

It is insufficient simply to teach an undergraduate course on predicate calculus or logic, sets and func-
tions. Experience with using a mechanized theorem prover is necessary, because it drills the student in the
details of formalism and symbolic manipulation. But there is a gap between tools designed for beginners
and tools useful to experts. The former are typically dead ends and teach the student only that mathematical
logic is tedious and impractical. The latter (in which we would include most of the “industrial strength” the-
orem provers mentioned in this article) have large, complex mathematical logics, a plethora of user controls,
and very steep learning curves to reach moderate skill levels.

Clearly, we need industrial strength theorem provers supporting user profiles, active advice and debug-
ging, with simple but layered error messages and documentation, which provide tutorial, beginner, and
intermediate levels consistent with developing the skill-set necessary to become a professional.

In addition, we need course material suitable for undergraduates that can take them from a rudimentary
understanding of formal logic to a “self-sufficient” level of competence with some industrial-strength formal
reasoning tool. By self-sufficient competence we mean that the successful student, interested in going
forward, ought to be able to do so using the documentation and help facilities available to the research
community using the tool. An example course, oriented around the Isabelle theorem proving system, has
been developed by David Basin (CS Department, ETH Zurich) and is available from his web page.

4.8. A Verified Theorem Prover

Can you prove a theorem prover correct? Obviously, yes. A propositional tautology checker was proved
correct in [6] in 1978. Can you prove a theorem prover correct with a mechanical theorem prover that
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you trust more than the theorem prover being verified? That is harder. Naively, using a theorem prover to
prove itself correct seems to catch you in the Liar’s Paradox. But this need not be so. If a theorem prover
optionally produces a formal proof as its output, then a very complicated AI based heuristic theorem prover
might be used to produce a formal proof of its own correctness and then that formal proof might be checked
by simple, trusted proof checker. Once such a proof is successfully checked, the option of generating the
formal proof can be turned off in the knowledge that the system is correct.

Our feeling is that this particular attack will not succeed. One reason is that the generated proof is
probably too large for a simple proof checker. For example, what if the constant� �� is used (as it is in
ACL2)? If the proof checker is sufficiently simple, natural numbers are represented in the Peano style,
e.g., 3 is����������. But then it is probably impractical to represent and manipulate� ��. But representing
constants more efficiently changes the logic and the simple proof checker. Would you still trust the more
efficient one? Such thinking leads to the idea of a hierarchy of theorem provers, each more powerful than
the previous one, each producing proofs that are much more succinct, and each by itself and checked by the
previous one.

We believe this is viable but raises another question. Do you trust the implementation of the lowest
level theorem prover? A grand challenge would be to build a “verified stack” [4] – a mechanically verified
microprocessor design hosting mechanically verified software on it – with the top-most software being a
verified theorem prover of practical value. Once built, use the fabricated design – as well as other platforms
– to check the proof of its correctness

5. Some Concluding Advice

We believe that substantial progress is possible on many of the problems identified above. We furthermore
believe that such progress would greatly ease the burden on the users of mechanized theorem proving tools
applied in the service of hardware and software verification. Despite our focus on ACL2, many theorem
proving systems could benefit. However, experience has taught us some lessons worth passing on here.

If you wish to pursue one of the research problems described in the preceding section, first, do an up-
to-date literature search, especially an online search. Because these problems are of such importance in
machine-assisted reasoning, there is active research. As noted early, our references tend to be of mainly
historic or archival interest and should not be taken as representative of the current state of the art.

Second, choose any one of the “industrial strength” theorem proving tools available and learn to use it
well. These tools have been well enough engineered so that many routine but complicated problems can be
solved automatically. It is of little value for you to solve a problem that the moderately experienced user of
a practical tool never encounters.

Then, choose a hard, commercially interesting proof project and solve it with the existing tool, to gain
and demonstrate your mastery of the tool and to establish a benchmark against which to assess your contri-
butions. Try to document where you spent your time in the proof effort.

Next, develop your ideas for solving your chosen problem. Keep in mind the actual needs you expe-
rienced while tackling the commercially interesting application with an existing proof engine. To develop
your ideas you may find it necessary to do “toy” applications and to write a “toy” theorem prover. But do
not “declare victory” until you have incorporated your heuristics and methods into an industrial strength
proof engine.

When you finish your extension, use the tool you have developed to solve a harder variant of the original
problem. Was it easier? Be prepared to admit that your new technique contributed less savings than your
blossoming familiarity with the problems! Indeed, perhaps the second pass at a hard problem will expose
some underlying patterns you can exploit to make the task still easier.

In summary,

� avoid doing theorem proving research in the abstract;
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� show that your work can improve an industrial strength theorem prover by becoming an expert on at
least one such system;

� do not content yourself with a demonstration on a toy problem (but we highly recommend the study
of toy problems and the iteration of a problem solving technique on an increasingly sophisticated
sequence of such toys);

� use the tool you build to prove something new and challenging; and

� document your effort.

These recommendations are not meant to be discouraging. But the research problems highlighted here
are still problems – after many decades of research and engineering – because they are hard. The “industrial
strength” theorem provers are as useful as they are because they provide logical features foundnecessary
to cope with industrial sized problems and they have been well enough engineered to permit the features to
be used. Some of these problems are simply hard in any setting at all. But many of them are hard because
they must be solved in the context of logical richness and engineering excellence.
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