The Peano curves as limit of α-dense curves

G. Mora

Abstract. In this paper we present a characterization of the Peano curves as the uniform limit of sequences of α-dense curves contained in the compact that it is filled by the Peano curve. These α-dense curves must have densities tending to zero and coordinate functions with variation tending to infinite as α tends to zero.

Las curvas de Peano como límite de curvas α-densas

Resumen. En este artículo presentamos una caracterización de las curvas de Peano como límite uniforme de sucesiones de curvas α-densas en el compacto que es llenado por la curva de Peano. Estas curvas α-densas deben tener densidades tendiendo a cero y sus funciones coordenadas deben de ser de variación tendiendo a infinito cuando α tiende a cero.

1 Introduction

In a metric space (E, d), given a compact set K and a real number $\alpha \geq 0$, an α-dense curve (more information on these curves may be found in [4]) in K is a continuous mapping $\gamma_\alpha : I \to E$, with $I = [0, 1]$, satisfying

i) the image $\gamma_\alpha(I)$, from now on noted γ_α^*, is contained in K,

ii) for any $x \in K$, the distance $d(x, \gamma_\alpha^*) \leq \alpha$.

Whenever $\alpha = 0$, one has a Peano curve provided that the interior of K to be non-void. The minimal α verifying the two preceding properties is, strictly speaking, the density of the curve in K, which coincides with the Hausdorff distance $d_H(K, \gamma_\alpha^*)$ (see [2]).

A compact subset K in (E, d) is said to be densifiable if it contains α-dense curves for arbitrary $\alpha > 0$. For example, in \mathbb{R}^N, $N \geq 1$, any cube $\prod_{i=1}^{N} [a_i, b_i]$ is densifiable. Any Peano Continuum, that is, a connected and locally connected compact set, is also densifiable. However, there exist densifiable sets which are not Peano Continua; for instance

$$K = \left\{ \left(x, \sin \frac{1}{x} \right) : 0 < x \leq 1 \right\} \cup \left\{ (0, y) : -1 \leq y \leq 1 \right\}.$$

Therefore, the α-density concept produces a new class, the densifiable sets, which is strictly between the class of Peano Continua and the class of connected and precompact sets.
Let f be a function defined on a real interval, for brevity we take the unit interval I, and valued on a metric space (E, d). We recall that the total variation of f, noted $V_I(f)$, is defined as

$$V_I(f) \equiv \sup_{\sigma} \left\{ \sum_{i=1}^{n} d(f(t_i), f(t_{i-1})) : \sigma \equiv \{t_0, t_1, \ldots, t_n\} \subset I ; t_0 < t_1 < \cdots < t_n \right\}.$$

Whenever $V_I(f) < \infty$, it is well-known that f is called of bounded variation on I (detailed properties of these functions can be found, for instance, in [1] or also in [6, Vol. I]). In particular, given a continuous mapping $\gamma : I \rightarrow \mathbb{R}^n$, i.e., a curve γ, the total variation $V_I(\gamma)$ is also called the length, written $L(\gamma)$. Whether $V_I(\gamma)$ is finite, the curve is said to be rectifiable and its length may be determined (see [1, theorem 24-6]) by

$$L(\gamma) = \lim_{|\Pi| \to 0} \sum_{i=1}^{n} \|\gamma(t_i) - \gamma(t_{i-1})\|,$$

Π being the partition $\Pi = \{t_0, t_1, \ldots, t_n\}$; $0 = t_0 < t_1 < \cdots < t_n = 1$

with norm

$$|\Pi| \equiv \max \{t_i - t_{i-1} : i = 1, \ldots, n\}.$$

The variation of a curve may be infinite even for very regular one, such as the following example shows (see [8, p. 53]).

Example 1 The coordinate functions γ_1, γ_2 of the spiral $\gamma = (\gamma_1, \gamma_2) : I \rightarrow I^2$ defined by

$$\gamma_1(t) = \begin{cases} \frac{t \cos \frac{2\pi}{r}}{r} & \text{if } 0 < t \leq 1 \\ 0 & \text{if } t = 0 \end{cases} \quad \gamma_2(t) = \begin{cases} \frac{t \sin \frac{2\pi}{r}}{r} & \text{if } 0 < t \leq 1 \\ 0 & \text{if } t = 0 \end{cases}$$

are both of infinite variation.

2 The theorem of characterization

The Hahn-Mazurkiewicz theorem (see [7]) assures that every Peano Continuum set in a metrizable space is the continuous image of the unit interval, and reciprocally. Since the unit square I^2 is a Peano Continuum, it may be taken as a good prototype of the image of a Peano curve, so we shall state our theorem of characterization in that set.

Theorem 1 A continuous mapping $\gamma = (\gamma_1, \gamma_2) : I \rightarrow I^2$ is a Peano curve filling I^2 if and only if is the uniform limit of a sequence of α-dense curves $\gamma^{(n)} = (\gamma_1^{(n)}, \gamma_2^{(n)})$ in I^2 with densities $\alpha_n \to 0$, for which there is no constant K such that the variation $V_I(\gamma_i^{(n)}) \leq K$, for all n, for some $i = 1, 2$.

Proof. First we prove the sufficiency. Let P be an arbitrary point of I^2; because of the density, for each n there exists $t_n \in I$ such that the euclidean distance

$$d(P, \gamma^{(n)}(t_n)) \leq \alpha_n.$$

By the Bolzano-Weierstrass theorem, given the sequence $(t_n)_n$ there exists a subsequence, noted in the same way, that converges to some $t \in I$. For arbitrary n, we consider the inequality

$$d(P, \gamma(t)) \leq d(P, \gamma^{(n)}(t_n)) + d(\gamma^{(n)}(t_n), \gamma^{(n)}(t)) + d(\gamma^{(n)}(t), \gamma(t)). \quad (1)$$

Thus, since $\alpha_n \to 0$ and γ is the uniform limit of γ_n, from the continuity of the curves and taking the limit in (1) when $n \to \infty$, the distance $d(P, \gamma(t)) = 0$. Therefore, the point $P = \gamma(t)$ and so γ is a Peano curve that fills I^2.

G. Mora
For proving the necessity, observe that if $\gamma = (\gamma_1, \gamma_2)$ is a Peano curve filling I^2, then each coordinate function γ_1, γ_2 is necessarily surjective onto I. We assume firstly that $\gamma^{(n)} = (\gamma_1^{(n)}, \gamma_2^{(n)})$, $n = 1, 2, \ldots$, is a sequence of curves in I^2 uniformly convergent

$$\lim_{n \to \infty} \gamma^{(n)} = \gamma,$$ \hspace{1cm} (2)

and prove that latter. □

Denoting by α_n the density in I^2 of each curve $\gamma^{(n)} = (\gamma_1^{(n)}, \gamma_2^{(n)})$, one has

$$\lim_{n \to \infty} \alpha_n = 0.$$ \hspace{1cm} (3)

Indeed, if (3) is not true, then there exists $\epsilon > 0$ such that for any k there is an integer N_k so that $\alpha_{N_k} > \epsilon$. Thus we can select a subsequence of curves of densities $\alpha_{N_k} > \epsilon$ for $k = 1, 2, 3, \ldots$. From (2) the limit of this subsequence is also γ, so denoting the subsequence in the same way, we determine, for each n, a point P_n such that

$$\epsilon < d(P_n, \gamma_n^*) \leq \alpha_n.$$ \hspace{1cm} (4)

Since $(P_n)_n$ belongs to the compact I^2, there exists a subsequence, noted in the same way, that converges to some point $P \in I^2$. Because of the continuity of the distance function, and taking into account that γ is the uniform limit of γ_n, given $0 < \delta < \epsilon$, there exists a sufficiently large n such that

$$|d(P, \gamma_n^*) - d(P_n, \gamma_n^*)| < \frac{\delta}{2}; \quad |d(P, \gamma^*) - d(P_n, \gamma_n^*)| < \frac{\delta}{2}.$$ \hspace{1cm} (5)

From (5) and (4), one has

$$d(P, \gamma^*) = d(P, \gamma^*) - d(P, \gamma_n^*) + d(P, \gamma_n^*) - d(P_n, \gamma_n^*) + d(P_n, \gamma_n^*) > -\frac{\delta}{2} - \frac{\delta}{2} + d(P_n, \gamma_n^*) > \epsilon - \delta,$$

which is absurd because $d(P, \gamma^*) = 0$. Therefore (3) is showed.

For each $i = 1, 2$, consider the Banach indicatrix Φ_{γ_i} of each coordinate function γ_i on the interval $[0, 1]$, that is, the function on I defined by

$$\Phi_{\gamma_i}(y) = \begin{cases} +\infty & \text{if card}(\gamma_i^{-1}(y)) \geq \omega \\ \text{card}(\gamma_i^{-1}(y)) & \text{if card}(\gamma_i^{-1}(y)) < \omega \end{cases}$$

ω being the first infinite cardinal. Φ_{γ_i} is measurable and satisfies the integral formula

$$\int_{0}^{1} \Phi_{\gamma_i}(y)dy = V_I(\gamma_i)$$ \hspace{1cm} (6)

(a proof can be found in [3] or [6]). Nevertheless Φ_{γ_i} is identically equal to $+\infty$ on I, so from (6)

$$V_I(\gamma_i) = \infty, \quad i = 1, 2.$$ \hspace{1cm} (7)

Suppose the existence of a constant K such that $V_I(\gamma_i^{(n)}) \leq K$, for all n, for some $i = 1, 2$. Thus, as $0 \leq \gamma_i^{(n)}(t) \leq 1$ for any $t \in I$, by applying the Helly’s first theorem (see [6, Vol. I, p.222]), γ_i would be of finite variation and it contradicts (7).

Now, it only remains to prove that, given a Peano curve $\gamma = (\gamma_1, \gamma_2)$ filling I^2 there exists a sequence $\gamma^{(n)} = (\gamma_1^{(n)}, \gamma_2^{(n)})$, $n = 1, 2, \ldots$, of curves in I^2 verifying (2). For that, consider the class \mathcal{C} of all rectangles $C = J_1 \times J_2$ of I^2, where J_1, J_2 are intervals contained in I, and define on this class the set function μ by

$$\mu(C) = \Lambda_1[\gamma_1^{-1}(J_1) \cap \gamma_2^{-1}(J_2)],$$ \hspace{1cm} (8)
Furthermore, inductively, given the partition and disjoint subsquares of instance its center, noted \(P \) consists ofous functions, say coincides with \(\gamma \in I \) a partition of \(C \)

One can easily check that formula (8) defines a Borel measure on the unit square, which will be also denoted \(\mu \). This measure, associated to the Peano curve \(\gamma \), satisfies

a) \(\mu(C) > 0 \) for any rectangle \(C \) with interior non-void,

b) \(\mu(I^2) = 1 \).

Now, for each \(n = 1, 2, \ldots \) consider a partition \(\Pi_n = \left\{ C_k^{(n)} : k = 1, 2, \ldots, 2^{2n} \right\} \) formed by \(2^{2n} \) equal and disjoint subsquares of \(I^2 \), arranged in such a way that \(C_k^{(n)} \) to be adjacent to \(C_{k-1}^{(n)} \) for \(k = 2, \ldots, 2^{2n} \). Furthermore, inductively, given the partition \(\Pi_n \), the next one \(\Pi_{n+1} = \left\{ C_k^{(n+1)} : k = 1, 2, \ldots, 2^{2(n+1)} \right\} \), obtained by dividing each square \(C_k^{(n)} \) into four new squares \(C_{k,i}^{(n)} \), \(i = 1, \ldots, 4 \), is arranged by defining

\[
C_{k(i-1)+1}^{(n+1)} = C_{k,i}^{(n)}, \quad k = 1, 2, \ldots, 2^n, \quad i = 1, \ldots, 4.
\]

From the properties a), b), the \(2^{2n} \) subintervals

\[
I_{1}^{(n)} = \left[0, \mu(C_1^{(n)}) \right], \\
I_{2}^{(n)} = \left[\mu(C_1^{(n)}), \mu(C_1^{(n)}) + \mu(C_2^{(n)}) \right], \\
\vdots \\
I_{2^n}^{(n)} = \left[\mu(C_1^{(n)}) + \mu(C_2^{(n)}) + \cdots + \mu(C_{2^{2n-1}}^{(n)}) + 1 \right]
\]

define a partition of \(I \).

Given \(n \), for each \(k = 1, 2, \ldots, 2^n \), we distinguish an arbitrary interior point of each square \(C_k^{(n)} \), for instance its center, noted \(P_k^{(n)} = (x_k^{(n)}, y_k^{(n)}) \), and define on \(I \) the functions

\[
h_1^{(n)}(t) = x_k^{(n)}, \quad t \in I_k^{(n)}, \\
h_2^{(n)}(t) = y_k^{(n)}, \quad t \in I_k^{(n)}.
\]

Observe that, for each \(n \), \(h_1^{(n)} \), \(h_2^{(n)} \) are, possibly, discontinuous at the points \(t_j = \sum_{i=1}^{j} \mu(C_i^{(n)}) \), \(j = 1, 2, \ldots, 2^n - 1 \). However, the sequences \(\left(h_1^{(n)} \right)_n \), \(\left(h_2^{(n)} \right)_n \) are uniformly convergent to two continuous functions, say \(\gamma_1', \gamma_2' \), respectively (consult [5]). Therefore one defines a curve \(\gamma' = (\gamma_1', \gamma_2') \) which coincides with \(\gamma = (\gamma_1, \gamma_2) \), if we take into account that, for each \(n \), the mapping \(\gamma'(n)(t) = (h_1^{(n)}(t), h_2^{(n)}(t)) \), \(t \in I \), coincide with \(\gamma(t) = (\gamma_1(t), \gamma_2(t)) \), \(t \in I \), at least at \(2^{2n} \) values for \(t \), corresponding to the \(2^{2n} \) centers of the subsquares \(C_k^{(n)} \) of the partition \(\Pi_n \).

To eliminate the discontinuity of \(h_1^{(n)}, h_2^{(n)} \), we proceed to make a linear interpolation. Hence, consider a partition of \(I \) formed by the subintervals

\[
J_1^{(n)} = \left[0, \frac{2^{2n} - 1}{2^n} \mu(C_1^{(n)}) \right], \\
K_1^{(n)} = \left[\frac{2^{2n} - 1}{2^n} \mu(C_1^{(n)}), \mu(C_1^{(n)}) + \frac{1}{2^n} \mu(C_1^{(n)}) \right].
\]
The Peano curves as limit of \(\alpha \)-dense curves

\[J_2^{(n)} = \left[\mu(C_1^{(n)}) + \frac{1}{2^{2n}} \mu(C_2^{(n)}) + \mu(C_3^{(n)}) - \frac{2^{2n} - 1}{2^{2n}} \mu(C_2^{(n)}) \right], \]

\[K_2^{(n)} = \left[\mu(C_1^{(n)}) + \frac{2^{2n} - 1}{2^{2n}} \mu(C_2^{(n)}) + \mu(C_3^{(n)}) + \frac{1}{2^{2n}} \mu(C_3^{(n)}) \right], \]

\[: \]

\[K_{2^{2n-1}}^{(n)} = \left[\mu(C_1^{(n)}) + \mu(C_2^{(n)}) + \cdots + \frac{2^{2n} - 1}{2^{2n}} \mu(C_{2^{2n}-1}^{(n)}), \right. \]

\[\mu(C_1^{(n)}) + \mu(C_2^{(n)}) + \cdots + \mu(C_{2^{2n}-1}^{(n)}) + \frac{1}{2^{2n}} \mu(C_{2^{2n}}^{(n)}) \right]. \]

\[J_{2^{2n}}^{(n)} = \left[\mu(C_1^{(n)}) + \mu(C_2^{(n)}) + \cdots + \mu(C_{2^{2n}-1}^{(n)}) + \frac{1}{2^{2n}} \mu(C_{2^{2n}}^{(n)}) \right], \]

and define, for each \(n \), the new functions \(f_1^{(n)}, f_2^{(n)} \) by

\[f_1^{(n)}(t) = \begin{cases}
 h_1^{(n)}(t) & \text{if } t \in J_k^{(n)}, k = 1, 2, \ldots, 2^n, \\
 x_j^{(n)} + \frac{x_{j+1}^{(n)} - x_j^{(n)}}{s_j^{(n)} - r_j^{(n)}}(t - r_j^{(n)}) & \text{if } t \in K_j^{(n)}, j = 1, 2, \ldots, 2^n - 1
\end{cases} \]

and

\[f_2^{(n)}(t) = \begin{cases}
 h_2^{(n)}(t) & \text{if } t \in J_k^{(n)}, k = 1, 2, \ldots, 2^n, \\
 y_j^{(n)} + \frac{y_{j+1}^{(n)} - y_j^{(n)}}{s_j^{(n)} - r_j^{(n)}}(t - r_j^{(n)}) & \text{if } t \in K_j^{(n)}, j = 1, 2, \ldots, 2^n - 1
\end{cases} \]

where \(r_j^{(n)}, s_j^{(n)} \) are the end-points of \(K_j^{(n)} \).

From the uniform convergence of \((h_1^{(n)})_n, (h_2^{(n)})_n \) to \(\gamma_1, \gamma_2 \), it follows easily that the sequences \((f_1^{(n)})_n, (f_2^{(n)})_n \) also converge uniformly to \(\gamma_1, \gamma_2 \), respectively, if we take into account that \(J_k^{(n)} \subset I_k^{(n)} \), for all \(k = 1, 2, \ldots, 2^n \), and \(K_j^{(n)} \) is a closed neighbourhood of \(t_j \) of length \(1 \frac{1}{2^{2n}} \mu(C_j^{(n)}) + \mu(C_{j+1}^{(n)}) \) for all \(j = 1, 2, \ldots, 2^n - 1 \). Therefore, by defining, for each \(n \), \(\gamma^{(n)} = (f_1^{(n)}, f_2^{(n)}) \) we have definitely a sequence of curves satisfying (2). Now the proof is complete.

Suppose we apply this last theorem, thus the following is immediate.

Corollary 1 Let \(\gamma^{(n)} = (\gamma_1^{(n)}, \gamma_2^{(n)}) \) be an arbitrary sequence of cartesian (for all \(n \) is \(\gamma_1^{(n)} = I_d \), the identity) \(\alpha \)-dense curves in \(I^2 \) with densities \(\alpha_n \to 0 \). Thus \((\gamma^{(n)})_n \) has no uniform limit.

Acknowledgement. This article is dedicated to Yves Cherruault for his 65st birthday

References

G. Mora
Department of Mathematical Analysis
University of Alicante,
03080-Alicante (SPAIN)
gaspar.mora@ua.es