Sharp and weighted inequalities for multilinear integral operators

Liu Lanzhe

Abstract. In this paper, we prove some weighted inequalities for the multilinear operators related to certain integral operators on the generalized Morrey spaces by using the sharp estimates of the multilinear operators. The operators include Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz operator.

1 Preliminaries and statement of main results

Throughout this paper, \(\varphi \) will denote a positive, increasing function on \(\mathbb{R}^+ \) and there exists a constant \(D > 0 \) such that

\[
\varphi(2t) \leq D \varphi(t) \quad \text{for } t \geq 0.
\]

Let \(w \) be a non-negative weight function on \(\mathbb{R}^n \) and \(f \) be a locally integrable function on \(\mathbb{R}^n \). Define that, for \(1 \leq p < \infty \),

\[
\|f\|_{L^p,\varphi(w)} = \sup_{x \in \mathbb{R}^n, d > 0} \left(\frac{1}{\varphi(d)} \int_{B(x,d)} |f(y)|^p w(y) \, dy \right)^{1/p},
\]

where \(B(x,d) = \{ y \in \mathbb{R}^n : |x-y| < d \} \). The generalized weighted Morrey spaces is defined by

\[
L^{p,\varphi}(\mathbb{R}^n, w) = \{ f \in L^1_{\text{loc}}(\mathbb{R}^n) : \|f\|_{L^p,\varphi(w)} < \infty \}.
\]

If \(\varphi(d) = d^\delta, \delta > 0 \), then \(L^{p,\varphi}(\mathbb{R}^n, w) = L^{p,\delta}(\mathbb{R}^n, w) \), which is the classical Morrey space (see [16, 17]).

In this paper, we study some integral operators as following. Suppose \(m_j \) are positive integers \((j = 1, \ldots, l) \), \(m_1 + \cdots + m_l = m \) and \(b_j \) are the functions on \(\mathbb{R}^n \) \((j = 1, \ldots, l) \). Let \(F_t(x,y) \) be defined on \(\mathbb{R}^n \times \mathbb{R}^n \times [0, +\infty) \), we denote

\[
F_t(f)(x) = \int_{\mathbb{R}^n} F_t(x,y) f(y) \, dy
\]
and
\[F^b_t(f)(x) = \int_{\mathbb{R}^n} \prod_{j=1}^t R_{m_j+1}(b_j; x, y) \frac{f(y)}{|x - y|^m} dy \]
for every bounded and compactly supported function \(f \), where
\[R_{m_j+1}(b_j; x, y) = b_j(x) - \sum_{|\alpha| \leq m_j} \frac{1}{\alpha!} D^\alpha b_j(y)(x - y)^\alpha. \]

Let \(H \) be the Banach space \(H = \{ h : \|h\| < \infty \} \) such that, for each fixed \(x \in \mathbb{R}^n \), \(F_t(f)(x) \) and \(F^b_t(f)(x) \) may be viewed as a mapping from \([0, +\infty)\) to \(H \). Then, the multilinear operators related to \(F_t \) is defined by
\[T^b(f)(x) = \|F^b_t(f)(x)\|, \]
where \(F_t \) satisfies: for fixed \(\varepsilon > 0 \),
\[\|F_t(y, x) - F_t(z, x)\| \leq C|y - z|^n|x - z|^{-n-\varepsilon} \]
if \(2|y - z| \leq |x - z| \). We also define that \(T(f)(x) = \|F_t(f)(x)\| \) and assume that \(T \) is bounded on \(L^p(\mathbb{R}^n, w) \) for \(1 < p < \infty \) and \(w \in A_1 \).

Note that when \(m = 0 \), \(T^b \) is just the multilinear commutator of \(T \) and \(b \) (see [13, 14, 23]). While when \(m > 0 \), \(T^b \) is non-trivial generalizations of the commutator. It is well known that multilinear operators are of great interest in harmonic analysis and have been widely studied by many authors (see [2–5]). In [7], the \(L^p \) \((p > 1) \) boundedness of the multilinear singular integral operator are obtained; In [11] and [12], a variant sharp estimate for the multilinear singular integral operators are obtained; In [18–20], the authors prove some sharp estimate for the multilinear commutator. As the Morrey space may be considered as an extension of the Lebesgue space, it is natural and important to study the boundedness of the multilinear integral operator on the Morrey spaces. The purpose of this paper is two-fold. First, we establish a sharp estimate for the multilinear operator related to \(F_t \), and second, we prove the weighted inequality for the multilinear integral operators on the generalized weighted Morrey spaces by using the sharp inequality. In section 3, we will give some applications of the theorem in this paper.

Now, let us introduce some notations. Throughout this paper, \(Q \) will denote a cube of \(\mathbb{R}^n \) with sides parallel to the axes. For a ball \(B \) or a cube \(Q \), \(kB \) or \(kQ \) will denote the ball or cube with the same center as \(B \) or \(Q \) and \(k \) times radius or edges of \(B \) or \(Q \) for \(k > 0 \). For any locally integrable function \(f \), the sharp function of \(f \) is defined by
\[f^\#(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y) - f_Q| dy, \]
where, and in what follows, \(f_Q = |Q|^{-1} \int_Q f(x) dx \). It is well-known that (see [10, 21])
\[f^\#(x) = \sup_{Q \ni x} \inf_{c \in \mathbb{C}} \frac{1}{|Q|} \int_Q |f(y) - c| dy. \]

We say that \(f \) belongs to \(\text{BMO}(\mathbb{R}^n) \) if \(f^\# \) belongs to \(L^\infty(\mathbb{R}^n) \) and \(\|f\|_{\text{BMO}} = \|f^\#\|_{L^\infty}. \) For \(1 \leq p < \infty \), we know \(\|f\|_{\text{BMO}, p} \approx \|f\|_{\text{BMO}, p} \) (see [21]), where
\[\|f\|_{\text{BMO}, p} = \sup_Q \left(\frac{1}{|Q|} \int_Q |f(y) - f_Q|^p dy \right)^{1/p}. \]

Let \(M \) be the Hardy-Littlewood maximal operator defined by
\[M(f)(x) = \sup_{Q \ni x} |Q|^{-1} \int_Q |f(y)| dy, \]

\[100 \]
we write that $M_p(f) = (M(f^p))^{1/p}$ for $0 < p < \infty$. We denote the Muckenhoupt weights by A_1, that is (see [10]):

$$A_1 = \{0 < w \in L^1_{loc}(\mathbb{R}^n) : M(w)(x) \leq Cw(x), \text{a.e.}\}.$$

We shall prove the following lemma.

Theorem 1 Let $1 < p < \infty$, $0 < D < 2^n$, $w \in A_1$, $D^{\alpha}b_j \in \text{BMO}(\mathbb{R}^n)$ for all α with $|\alpha| = m_j$ and $j = 1, \ldots, l$. Then

$$\|T^\delta(f)\|_{L^{p,\varphi}(w)} \leq C \prod_{j=1}^l \left(\sum_{|\alpha| = m_j} \|D^{\alpha}b_j\|_{\text{BMO}} \right) \|f\|_{L^{p,\varphi}(w)}.$$

2 Proof of Theorem

To prove the theorems, we need the following lemmas.

Lemma 1 ([4]) Let b be a function on \mathbb{R}^n and $D^\alpha b \in L^q(\mathbb{R}^n)$ for all α with $|\alpha| = m$ and some $q > n$. Then, for $x \neq y$,

$$|R_m(b; x, y)| \leq C|x - y|^m \sum_{|\alpha| = m} \left(\frac{1}{|Q(x, y)|} \int_{Q(x, y)} |D^\alpha b(z)|^q \, dz \right)^{1/q},$$

where \tilde{Q} is the cube centered at x and having side length $5\sqrt{n}|x - y|$.

Lemma 2 Let $1 < p < \infty$, $0 < D < 2^n$, $w \in A_1$. Then, for $f \in L^{p,\varphi}(\mathbb{R}^n, w)$,

(a) $\|M(f)\|_{L^{p,\varphi}(w)} \leq C\|f^\#\|_{L^{p,\varphi}(w)}$;

(b) $\|M_q(f)\|_{L^{p,\varphi}(w)} \leq C\|f\|_{L^{p,\varphi}(w)}$ for $1 < q < p$.

Proof. (a) Let $f \in L^{p,\varphi}(\mathbb{R}^n, w)$. For a ball $B = B(x, d) \subset \mathbb{R}^n$, note that $M(w\chi_B) \in A_1$ and by the following inequality (see [6]): for any $u \in A_1$,

$$\int_{\mathbb{R}^n} |M(f)(y)|^p w(y) \, dy \leq C \int_{\mathbb{R}^n} |f^\#(y)|^p u(y) \, dy,$$

we get

$$\int_B |M(f)(y)|^p w(y) \, dy \leq \int_{\mathbb{R}^n} |M(f)(y)|^p M(w\chi_B)(y) \, dy \leq C \int_{\mathbb{R}^n} |f^\#(y)|^p M(w\chi_B)(y) \, dy = C \left[\int_B |f^\#(y)|^p M(w\chi_B)(y) \, dy + \sum_{k=0}^{\infty} \int_{2^{k+1}B \setminus 2^kB} |f^\#(y)|^p M(w\chi_B)(y) \, dy \right] \leq C \left[\int_B |f^\#(y)|^p M(w)(y) \, dy + \sum_{k=0}^{\infty} \int_{2^{k+1}B \setminus 2^kB} |f^\#(y)|^p \left(\sup_{Q \supset y} \frac{1}{|Q|} \int_B w(z) \, dz \right) \, dy \right] \leq C \left[\int_B |f^\#(y)|^p M(w)(y) \, dy + \sum_{k=0}^{\infty} \int_{2^{k+1}B \setminus 2^kB} |f^\#(y)|^p \left(\frac{1}{|2^{k+1}B|} \int_B w(z) \, dz \right) \, dy \right].$$
Lemma 3 (Main Lemma) Let $D^\alpha b_j \in \text{BMO}(\mathbb{R}^n)$ for all α with $|\alpha| = m_j$ and $j = 1, \ldots, l$. Then there exists a constant $C > 0$ such that for any $f \in C_0^\infty(\mathbb{R}^n)$, $1 < q < \infty$ and $x \in \mathbb{R}^n$,

$$ (T_b^k(f))^\#(x) \leq C \prod_{j=1}^l \left(\sum_{|\alpha_j| = m_j} \|D^\alpha b_j\|_{\text{BMO}} \right) M_q(f)(x). $$

Proof. It suffices to prove for $f \in C_0^\infty(\mathbb{R}^n)$ and some constant C_0, the following inequality holds:

$$ \frac{1}{|Q|} \int_Q |T_b^k(f)(x) - C_0| \ dx \leq C \prod_{j=1}^l \left(\sum_{|\alpha_j| = m_j} \|D^\alpha b_j\|_{\text{BMO}} \right) M_q(f)(x). $$

Without loss of generality, we may assume $l = 2$. Fix a cube $Q = Q(x_0, d)$ and $x \in Q$. Let $\hat{Q} = 5\sqrt{n}Q$ and $\hat{b}_j(x) = b_j(x) - \sum_{|\alpha| = m_j} \frac{1}{n!} (D^\alpha b_j)_Q x^\alpha$, then $R_{m_1}(b_j; x, y) = R_{m_1}(b_j; x, y)$ and $D^\alpha \hat{b}_j = D^\alpha b_j - (D^\alpha b_j)_Q$ for $|\alpha| = m_j$. We write, for $f_1 = f|_{\hat{Q}}$ and $f_2 = f|_{\mathbb{R}^n \setminus \hat{Q}}$,

$$ F_t^k(f)(x) = \int_{\mathbb{R}^n} \frac{\prod_{j=1}^2 R_{m_j+1}(\hat{b}_j; x, y)}{|x-y|^m} F_t(x, y) f(y) \ dy $$

$$ = \int_{\mathbb{R}^n} \frac{\prod_{j=1}^2 R_{m_j+1}(\hat{b}_j; x, y)}{|x-y|^m} F_t(x, y) f_2(y) \ dy $$

$$ + \int_{\mathbb{R}^n} \frac{\prod_{j=1}^2 R_{m_j}(\hat{b}_j; x, y)}{|x-y|^m} F_t(x, y) f_1(y) \ dy $$

$$ - \sum_{|\alpha_1| = m_1} \frac{1}{\alpha_1!} \int_{\mathbb{R}^n} \frac{R_{m_2} (\hat{b}_2; x, y)(x-y)^{\alpha_1}}{|x-y|^m} D^{\alpha_2} \hat{b}_1 (y) F_t(x, y) f_1(y) \ dy $$

$$ - \sum_{|\alpha_2| = m_2} \frac{1}{\alpha_2!} \int_{\mathbb{R}^n} \frac{R_{m_1} (\hat{b}_1; x, y)(x-y)^{\alpha_2}}{|x-y|^m} D^{\alpha_2} \hat{b}_2 (y) F_t(x, y) f_1(y) \ dy $$

$$ + \sum_{|\alpha_1| = m_1} \frac{1}{\alpha_1!} \int_{\mathbb{R}^n} \frac{(x-y)^{\alpha_1+\alpha_2}}{|x-y|^m} D^{\alpha_1} \hat{b}_1 (y) D^{\alpha_2} \hat{b}_2 (y) F_t(x, y) f_1(y) \ dy, $$

Thus,

$$ \|M(f)\|_{L_p(w)} \leq C \|f\|^p_{L_p(w)}, $$

A similar argument as in the proof of (a) will give the proof of (b), we omit the details.

Liu Lanzhe
Sharp and weighted inequalities for multilinear integral operators

then

\[
|T^b(f)(x) - T^b(f_2)(x_0)| = \left| \left\| F^b_i(f)(x) \right\| - \left\| F^b_i(f_2)(x_0) \right\| \right|
\]

\[
\leq \left\| F^b_i(f)(x) - F^b_i(f_2)(x_0) \right\|
\]

\[
\leq \left\| \int_{\mathbb{R}^n} \frac{\prod_{j=1}^2 R_{m_j}(b_j; x, y)}{|x - y|^m} F_i(x, y) f_i(y) \, dy \right\| \quad (:= I_1(x))
\]

\[
+ \left\| \sum \frac{1}{\alpha_1!} \int_{\mathbb{R}^n} \frac{R_{m_1}(b_1; x, y)(x - y)^{\alpha_1}}{|x - y|^m} D^{\alpha_1} b_1(y) F_i(x, y) f_i(y) \, dy \right\| \quad (:= I_2(x))
\]

\[
+ \left\| \sum \frac{1}{\alpha_2!} \int_{\mathbb{R}^n} \frac{R_{m_2}(b_2; x, y)(x - y)^{\alpha_2}}{|x - y|^m} D^{\alpha_2} b_2(y) F_i(x, y) f_i(y) \, dy \right\| \quad (:= I_3(x))
\]

\[
+ \left\| \sum \frac{1}{\alpha_1! \alpha_2!} \int_{\mathbb{R}^n} \frac{(x - y)^{\alpha_1 + \alpha_2 D^{\alpha_1} b_1(y) D^{\alpha_2} b_2(y)}}{|x - y|^m} F_i(x, y) f_i(y) \, dy \right\| \quad (:= I_4(x))
\]

\[
+ \left| T^b_i(f_2)(x) - T^b_i(f_2)(x_0) \right| \quad (:= I_5(x))
\]

thus

\[
\frac{1}{|Q|} \int_Q |T^b_i(f)(x) - T^b_i(f_2)(x_0)| \, dx \leq I_1 + I_2 + I_3 + I_4 + I_5,
\]

where

\[
I_k = \frac{1}{|Q|} \int_Q I_k(x) \, dx, \quad k = 1, \ldots, 5.
\]

Now, let us estimate \(I_1, I_2, I_3, I_4 \) and \(I_5 \), respectively. First, for \(x \in Q \) and \(y \in \hat{Q} \), by Lemma 1, we get

\[
R_m(b_j; x, y) \leq C|x - y|^m \sum_{|\alpha_j| = m_j} \|D^{\alpha_j} b_j\|_{\text{BMO}},
\]

thus, by the \(L^q \)-boundedness of \(T \) for \(1 < q < \infty \), we obtain

\[
I_1 \leq C \prod_{j=1}^2 \left(\sum_{|\alpha_j| = m_j} \|D^{\alpha_j} b_j\|_{\text{BMO}} \right) \frac{1}{|Q|} \int_Q |T(f_1)(x)| \, dx
\]

\[
\leq C \prod_{j=1}^2 \left(\sum_{|\alpha_j| = m_j} \|D^{\alpha_j} b_j\|_{\text{BMO}} \right) \left(\frac{1}{|Q|} \int_Q |T(f_1)(x)|^q \, dx \right)^{1/q}
\]

\[
\leq C \prod_{j=1}^2 \left(\sum_{|\alpha_j| = m_j} \|D^{\alpha_j} b_j\|_{\text{BMO}} \right) |Q|^{-1/q} \left(\int_Q |f_1(x)|^q \, dx \right)^{1/q}
\]

\[
\leq C \prod_{j=1}^2 \left(\sum_{|\alpha_j| = m_j} \|D^{\alpha_j} b_j\|_{\text{BMO}} \right) M_q(f)(\bar{x}).
\]
For I_2, denoting $q = pr$ for $1 < p < \infty$, $1 < r < \infty$ and $1/r + 1/r' = 1$, we get, by Hölder’s inequality,

\[
I_2 \leq C \sum_{|\alpha_2| = m_2} \|D^{\alpha_2}b_2\|_{\text{BMO}} \sum_{|\alpha_1| = m_1} \left(\frac{1}{|Q|} \int_Q |T(D^{\alpha_1}\tilde{b}_1f_1)(x)| \, dx \right)^{1/p}
\]
\[
\leq C \sum_{|\alpha_2| = m_2} \|D^{\alpha_2}b_2\|_{\text{BMO}} \sum_{|\alpha_1| = m_1} |Q|^{-1/r} \left(\int_{\mathbb{R}^n} |D^{\alpha_1}\tilde{b}_1f_1(x)|^p \, dx \right)^{1/p}
\]
\[
\leq C \sum_{|\alpha_2| = m_2} \|D^{\alpha_2}b_2\|_{\text{BMO}} \sum_{|\alpha_1| = m_1} \left(\frac{1}{|Q|} \int_Q |D^{\alpha_1}\tilde{b}_1(x)|^{pr'} \, dx \right)^{1/pr'} \left(\frac{1}{|Q|} \int_Q |f(x)|^{pr} \, dx \right)^{1/pr}
\]
\[
\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha| = m_j} \|D^{\alpha}b_j\|_{\text{BMO}} \right) M_q(f)(\tilde{x}).
\]

For I_3, similar to the proof of I_2, we get

\[
I_3 \leq C \prod_{j=1}^{2} \left(\sum_{|\alpha| = m_j} \|D^{\alpha}b_j\|_{\text{BMO}} \right) M_q(f)(\tilde{x}).
\]

Similarly, for I_4, denoting $q = pr_3$ for $1 < p < \infty$, $r_1, r_2, r_3 > 1$ and $1/r_1 + 1/r_2 + 1/r_3 = 1$, we obtain

\[
I_4 \leq C \sum_{|\alpha_2| = m_2} \frac{1}{|Q|} \int_Q |T(D^{\alpha_1}\tilde{b}_1D^{\alpha_2}\tilde{b}_2f_1)(x)| \, dx
\]
\[
\leq C \sum_{|\alpha_1| = m_1} \left(\frac{1}{|Q|} \int_{\mathbb{R}^n} |T(D^{\alpha_1}\tilde{b}_1D^{\alpha_2}\tilde{b}_2f_1)(x)|^p \, dx \right)^{1/p}
\]
\[
\leq C \sum_{|\alpha_1| = m_1} |Q|^{-1/p} \left(\int_{\mathbb{R}^n} |D^{\alpha_1}\tilde{b}_1(x)D^{\alpha_2}\tilde{b}_2(x)f_1(x)|^p \, dx \right)^{1/p}
\]
\[
\leq C \sum_{|\alpha_1| = m_1} \left(\frac{1}{|Q|} \int_Q |D^{\alpha_1}\tilde{b}_1(x)|^{pr_1} \, dx \right)^{1/pr_1} \left(\frac{1}{|Q|} \int_Q |D^{\alpha_2}\tilde{b}_2(x)|^{pr_2} \, dx \right)^{1/pr_2}
\]
\[
\times \left(\frac{1}{|Q|} \int_Q |f(x)|^{pr_3} \, dx \right)^{1/pr_3}
\]
\[
\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha| = m_j} \|D^{\alpha}b_j\|_{\text{BMO}} \right) M_q(f)(\tilde{x}).
\]

For I_5, we write

\[
F^b_i(f_2)(x) - F^b_i(f_2)(x_0) = \int_{\mathbb{R}^n} \left(\frac{F_i(x,y)}{|x-y|^m} - \frac{F_i(x_0,y)}{|x_0-y|^m} \right) \prod_{j=1}^{2} R_{m_j} (\tilde{b}_j; x, y) f_2(y) \, dy \quad (:= I_5^{(1)})
\]
Note that we have, for $\|m\|
abla b_{1:2;0} = \frac{R_{m_2}(b_{1:2;0})}{|x_0 - y|^m} F_{t}(x_0, y) f_2(y) dy (:= I_5^{(2)})$

$$+ \int_{\mathbb{R}^n} \left(R_{m_1}(b; x, y) - R_{m_1}(b_{1:0}) \right) \frac{R_{m_2}(b_{1:0})}{|x_0 - y|^m} F_{t}(x_0, y) f_2(y) dy (:= I_5^{(3)})$$

$$- \sum_{\alpha_1 = 1}^{\alpha_2 = m_2} \frac{1}{\alpha_1!} \int_{\mathbb{R}^n} \left[R_{m_2}(b; x, y) (x - y)^{\alpha_1} f_1(x, y) - \frac{R_{m_2}(b_{1:0}; x, y)}{|x_0 - y|^m} f_1(x_0, y) \right] \times D^\alpha \tilde{b}_1(y) f_2(y) dy (:= I_5^{(4)})$$

$$- \sum_{\alpha_1 = 1}^{\alpha_2 = m_2} \frac{1}{\alpha_2!} \int_{\mathbb{R}^n} \left[R_{m_1}(b_{1:0}; x, y) (x - y)^{\alpha_2} f_1(x, y) - \frac{R_{m_1}(b_{1:0}; x, y)}{|x_0 - y|^m} f_1(x_0, y) \right] \times D^\alpha \tilde{A}_2(y) f_2(y) dy (:= I_5^{(5)})$$

$$+ \sum_{\alpha_1 = 1}^{\alpha_2 = m_2} \frac{1}{\alpha_1!\alpha_2!} \int_{\mathbb{R}^n} \left[\frac{(x - y)^{\alpha_1 + \alpha_2}}{|x - y|^m} f_1(x, y) - \frac{(x_0 - y)^{\alpha_1 + \alpha_2}}{|x_0 - y|^m} f_1(x_0, y) \right] \times D^\alpha \tilde{b}_1(y) D^\alpha \tilde{b}_2(y) f_2(y) dy (:= I_5^{(6)})$$

By Lemma 1 and the following inequality (see [21])

$$|b_{Q_1} - b_{Q_2}| \leq C \log(\|Q_2/|Q_1|\|b\|_{BMO} \quad \text{for} \quad Q_1 \subset Q_2,$$

we have, for $x \in Q$ and $y \in 2^{k+1}Q \setminus 2^kQ$,

$$|R_m(b; x, y)| \leq C |x - y|^m \sum_{\alpha_1 = m} \left(\frac{1}{|Q(x, y)|} \int_{Q(x, y)} \left| D^\alpha b(z) - (D^\alpha b)_\tilde{Q} \right| dz \right)^{1/q}$$

$$\leq C |x - y|^m \sum_{\alpha_1 = m} \left(\frac{1}{|Q(x, y)|} \int_{Q(x, y)} \left(|D^\alpha b(z) - (D^\alpha b)_\tilde{Q}(x, y)| + |(D^\alpha b)_\tilde{Q}(x, y) - (D^\alpha b)_\tilde{Q} dy \right)^\frac{1}{q}$$

$$\leq C |x - y|^m \sum_{\alpha_1 = m} \left(\|D^\alpha b\|_{BMO} + \log(|Q(x, y)/\tilde{Q}|) \right) \left(\|D^\alpha b\|_{BMO} \right)$$

$$\leq C k |x - y|^m \sum_{\alpha_1 = m} \|D^\alpha b\|_{BMO}.$$
and Lemma 1, we have
\[
\| \cdot \|_{L^2} \leq \sum_{j=1}^{\infty} k^2 (2^{-k} + 2^{-\epsilon k}) M_q(f)(x)
\]
thus
\[
\frac{1}{|\beta| < m} \sum_{j=1}^{\infty} \frac{1}{|\beta|} R_{m-|\beta|} (D^\beta \tilde{b}; x, x_0, y) |x-y|^\beta
\]
and Lemma 1, we have
\[
|R_m(\tilde{b}; x, y) - R_m(\tilde{b}; x_0, y)| \leq C \sum_{|\beta| < m} |x-x_0|^{|\beta|} |x-y|^{|\beta|} \| D^\alpha b \|_{\text{BMO}}.
\]
For $I_5^{(2)}$, by the formula (see [4]):
\[
R_m(\tilde{b}; x, y) - R_m(\tilde{b}; x_0, y) = \sum_{|\beta| < m} \frac{1}{|\beta|} R_{m-|\beta|} (D^\beta \tilde{b}; x, x_0, y) |x-y|^\beta
\]
and Lemma 1, we have
\[
|R_m(\tilde{b}; x, y) - R_m(\tilde{b}; x_0, y)| \leq C \sum_{|\beta| < m} |x-x_0|^{|\beta|} |x-y|^{|\beta|} \| D^\alpha b \|_{\text{BMO}},
\]
thus
\[
\| I_5^{(2)} \| \leq C \prod_{j=1}^{2} \left(\sum_{|\alpha|=m_j} \| D^\alpha b_j \|_{\text{BMO}} \right) \sum_{k=0}^{\infty} \int_{2^{k+1}Q \setminus 2^k Q} k \frac{|x-x_0|}{|x_0-y|^{|\beta|+1}} |f(y)| \, dy
\]
\[
\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha|=m_j} \| D^\alpha b_j \|_{\text{BMO}} \right) M_q(f)(\tilde{x});
\]
Similarly,
\[
\| I_5^{(3)} \| \leq C \prod_{j=1}^{2} \left(\sum_{|\alpha|=m_j} \| D^\alpha b_j \|_{\text{BMO}} \right) M_q(f)(\tilde{x});
\]
For $I_5^{(4)}$, we get
\[
\| I_5^{(4)} \| \leq C \sum_{|\alpha|=m_1} \int_{\mathbb{R}^n} \left| (x-y)^{\alpha_1} F_1(x, y) - (x_0-y)^{\alpha_1} F_1(x_0, y) \right| \frac{|R_{m_2}(\tilde{b}_2; x, y)|}{|x_0-y|^m} \| D^\alpha \tilde{b}_1(y) \| \| f(y) \| \, dy
\]
\[
+ C \sum_{|\alpha|=m_1} \int_{\mathbb{R}^n} |R_{m_2}(\tilde{b}_2; x, y) - R_{m_2}(\tilde{b}_2; x_0, y)| \frac{|x_0-y|^m}{|x_0-y|^m} \| F_1(x_0, y) \| \| D^\alpha \tilde{b}_1(y) \| \| f(y) \| \, dy
\]
\[
\leq C \sum_{|\alpha|=m_2} \int_{\mathbb{R}^n} \left| (x-x_0) \frac{|x-x_0|^\epsilon}{|x_0-y|^{m+n+\epsilon}} + \frac{|x-x_0|^\epsilon}{|x_0-y|^{m+n+\epsilon}} \right| |R_{m_2}(\tilde{b}_2; x, y)| \| D^\alpha \tilde{b}_1(y) \| \| f(y) \| \, dy
\]
\[
\leq C \sum_{|\alpha|=m_1} \| D^\alpha b_2 \|_{\text{BMO}} \sum_{k=1}^{\infty} k(2^{-k} + 2^{-\epsilon k}) \left(\frac{1}{|2^k Q|} \int_{2^k Q} |f(y)|^q \, dy \right)^{1/q}
\]
\[
\times \sum_{|\alpha|=m_2} \left(\frac{1}{|2^k Q|} \int_{2^k Q} |D^\alpha \tilde{b}_1(y) - (D^\alpha b_1)_{\tilde{Q}}|^{q'} \, dy \right)^{1/q'}
\]
\[
\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha|=m_j} \| D^\alpha b_j \|_{\text{BMO}} \right) M_q(f)(\tilde{x});
\]
Similarly,

\[||I_5^{(5)}|| \leq C \prod_{j=1}^{2} \left(\sum_{|\alpha|=m_j} ||D^\alpha b_j||_{BMO} \right) M_q(f)(\bar{x}); \]

For \(I_5^{(6)} \), taking \(r_1, r_2 > 1 \) such that \(1/q + 1/r_1 + 1/r_2 = 1 \), then

\[||I_5^{(6)}|| \leq C \sum_{|\alpha_1|=m_1, |\alpha_2|=m_2} \int_{\mathbb{R}^n} |D^{\alpha_1} \tilde{b}_1(y)||D^{\alpha_2} \tilde{b}_2(y)||f_2(y)| \]
\[\times \left| \frac{(x-y)^{\alpha_1+\alpha_2}F_i(x,y)}{|x-y|^m} - \frac{(x_0-y)^{\alpha_1+\alpha_2}F_i(x_0,y)}{|x_0-y|^m} \right| dy \]
\[\leq C \sum_{|\alpha_1|=m_1, |\alpha_2|=m_2} \int_{\mathbb{R}^n \setminus Q} \left(\frac{|x-x_0|}{|x-y|^{n+1}} + \frac{|x-x_0|^{\varepsilon}}{|x_0-y|^{n+1}} \right) |D^{\alpha_1} \tilde{b}_1(y)||D^{\alpha_2} \tilde{b}_2(y)||f(y)| dy \]
\[\leq C \sum_{|\alpha_1|=m_1, |\alpha_2|=m_2} \sum_{k=1}^{\infty} k(2^{-k} + 2^{-\varepsilon k}) \left(\frac{1}{2^k Q} \int_{2^k Q} |f(y)|^q dy \right)^{1/q} \]
\[\times \left(\frac{1}{2^k Q} \int_{2^{k+1} Q} |D^{\alpha_1} \tilde{b}_1(y)|^{r_1} dy \right)^{1/r_1} \left(\frac{1}{2^k Q} \int_{2^{k+1} Q} |D^{\alpha_2} \tilde{b}_2(y)|^{r_2} dy \right)^{1/r_2} \]
\[\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha|=m_j} ||D^\alpha b_j||_{BMO} \right) M_q(f)(\bar{x}); \]

Thus

\[||I_5|| \leq C \prod_{j=1}^{2} \left(\sum_{|\alpha|=m_j} ||D^\alpha b_j||_{BMO} \right) M_q(f)(\bar{x}). \]

This completes the proof of Main Lemma. ■

PROOF OF THEOREM 1. Taking \(1 < q < p \) in Main Lemma, by Lemma 2, we obtain

\[||T^b(f)||_{L^{p,\varphi}(w)} \leq C ||M(T^b(f))||_{L^{p,\varphi}(w)} \]
\[\leq C ||(T^A(f))||^\#_{L^{p,\varphi}(w)} \]
\[\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha|=m_j} ||D^\alpha b_j||_{BMO} \right) ||M_q(f)||_{L^{p,\varphi}(w)} \]
\[\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha|=m_j} ||D^\alpha b_j||_{BMO} \right) ||f||_{L^{p,\varphi}(w)}. \]

This finishes the proof. ■

3 Applications

In this section we shall apply the theorem of the paper to several operators such as the Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz operator.
3.1 Application 1: Littlewood-Paley operator

Let \(\varepsilon > 0 \) and \(\psi \) be a fixed function which satisfies the following properties:

1. \(\int_{\mathbb{R}^n} \psi(x) \, dx = 0 \),
2. \(|\psi(x)| \leq C(1 + |x|)^{-(n+1)} \),
3. \(|\psi(x + y) - \psi(x)| \leq C|y|^\varepsilon (1 + |x|)^{-(n+1+\varepsilon)} \) when \(2|y| < |x| \).

The multilinear Littlewood-Paley operator is defined by

\[
g^b_\psi(f)(x) = \left(\int_0^\infty |F^b_t(f)(x)|^2 \, \frac{dt}{t} \right)^{1/2},
\]

where

\[
F^b_t(f)(x) = \int_{\mathbb{R}^n} \prod_{j=1}^l R_{m_j+1}(b_j; x, y) \psi_t(x - y)f(y) \, dy
\]

and \(\psi_t(x) = t^{-n}\psi(x/t) \) for \(t > 0 \). Set \(F_t(f) = \psi_t * f \). We also define that

\[
g_\psi(f)(x) = \left(\int_0^\infty |F_t(f)(x)|^2 \, \frac{dt}{t} \right)^{1/2},
\]

which is the Littlewood-Paley operator (see [22]).

Let \(H \) be the space \(H = \left\{ h : \|h\| = \left(\int_0^\infty |h(t)|^2 \, dt/t \right)^{1/2} < \infty \right\} \), then, for each fixed \(x \in \mathbb{R}^n \), \(F^A_t(f)(x) \) may be viewed as a mapping from \([0, +\infty)\) to \(H \), and it is clear that

\[
g_\psi(f)(x) = \|F_t(f)(x)\| \quad \text{and} \quad g^b_\psi(f)(x) = \|F^b_t(f)(x)\|.
\]

We know that \(g_\psi \) is bounded on \(L^p(\mathbb{R}^n, w) \) for \(1 < p < \infty \) and \(w \in A_1 \) (see [21]). Thus

\[
(1) \quad (g^b_\psi(f))^{\#}(x) \leq C \prod_{j=1}^l \left(\sum_{|\alpha_j|=m_j} \|D^\alpha_j b_j\|_{\text{BMO}} \right) M_q(f)(x)
\]

for any \(f \in C_0^\infty(\mathbb{R}^n) \) and \(1 < q < \infty \);

\[
(2) \quad \|g^b_\psi(f)\|_{L^p,\psi(w)} \leq C \prod_{j=1}^l \left(\sum_{|\alpha_j|=m_j} \|D^\alpha_j b_j\|_{\text{BMO}} \right) \|f\|_{L^p,\psi(w)}
\]

for \(0 < D < 2^n \) and any \(w \in A_1 \), \(1 < p < \infty \).

3.2 Application 2: Marcinkiewicz operator

Let \(\delta \geq 0 \), \(0 < \gamma \leq 1 \) and \(\Omega \) be homogeneous of degree zero on \(\mathbb{R}^n \) with \(\int_{S^{n-1}} \Omega(x') \, d\sigma(x') = 0 \). Assume that \(\Omega \in Lip_\gamma(S^{n-1}) \), that is there exists a constant \(M > 0 \) such that for any \(x, y \in S^{n-1}, \quad |\Omega(x) - \Omega(y)| \leq M|x - y|\gamma \). The multilinear Marcinkiewicz operator is defined by

\[
\mu^b_\psi(f)(x) = \left(\int_0^\infty |F^b_t(f)(x)|^2 \, \frac{dt}{t^3} \right)^{1/2},
\]

where

\[
F^b_t(f)(x) = \int_{|x-y| \leq t} \prod_{j=1}^l R_{m_j+1}(b_j; x, y) \frac{\Omega(x-y)}{|x-y|^{\gamma n}} f(y) \, dy
\]
set

\[F_t(f)(x) = \int_{|x-y| \leq t} \frac{\Omega(x-y)}{|x-y|^{n-1}} f(y) \, dy. \]

We also define that

\[\mu_\Omega(f)(x) = \left(\int_0^\infty |F_t(f)(x)|^2 \frac{dt}{t^3} \right)^{1/2} \]

which is the Marcinkiewicz operator (see [23]).

Let \(H \) be the space \(H = \{ h : \|h\| = \left(\int_0^\infty |h(t)|^2 \, dt / t^3 \right)^{1/2} < \infty \} \). Then, it is clear that

\[\mu_\Omega(f)(x) = \|F_t(f)(x)\| \quad \text{and} \quad \mu_\Omega^b(f)(x) = \|F_t^b(f)(x)\|. \]

We know that \(\mu_\Omega \) is bounded on \(L^p(\mathbb{R}^n, \omega) \) for \(1 < p < \infty \) and \(\omega \in A_1 \) (see [22]). Thus

\[(1) \quad (\mu_\Omega^b(f))^\#(x) \leq C \prod_{j=1}^l \left(\sum_{|\alpha_j| = m_j} \|D^{\alpha_j} b_j\|_{\text{BMO}} \right) M_q(f)(x) \]

for any \(f \in C_0^\infty(\mathbb{R}^n) \) and \(1 < q < \infty \);

\[(2) \quad \|\mu_\Omega^b(f)\|_{L^{p,q}(\omega)} \leq C \prod_{j=1}^l \left(\sum_{|\alpha_j| = m_j} \|D^{\alpha_j} b_j\|_{\text{BMO}} \right) \|f\|_{L^{p,q}(\omega)} \]

for \(0 < D < 2^n \) and any \(\omega \in A_1, \ 1 < p < \infty \).

3.3 Application 3: Bochner-Riesz operator

Let \(\delta > (n-1)/2 \), \(B_t^\delta(\hat{f})(\xi) = (1 - t^2|\xi|^2)^\delta \hat{f}(\xi) \). Denote that

\[B_{\delta,t}^b(f)(x) = \int_{\mathbb{R}^n} \prod_{j=1}^l R_{m_j+1}(b_j; x, y) \frac{B_t^\delta(x-y)f(y)}{|x-y|^m} \, dy, \]

where \(B_t^\delta(z) = t^{-n} B^\delta(z/t) \) for \(t > 0 \). The maximal multilinear Bochner-Riesz operator is defined by

\[B_{\delta,*}^b(f)(x) = \sup_{t > 0} |B_{\delta,t}^b(f)(x)|; \]

We also define that

\[B_{\delta,*}(f)(x) = \sup_{t > 0} |B_{\delta,t}^b(f)(x)| \]

which is the Bochner-Riesz operator (see [15]).

Let \(H \) be the space \(H = \{ h : \|h\| = \sup_{t>0} |h(t)| < \infty \} \), then it is clear that

\[B_{\delta}^\delta(f)(x) = \|B_t^\delta(f)(x)\| \quad \text{and} \quad B_{\delta,*}^b(f)(x) = \|B_{\delta,t}^b(f)(x)\|. \]

We know that \(B_{\delta,*} \) is bounded on \(L^p(\mathbb{R}^n, \omega) \) for \(1 < p < \infty \) and \(\omega \in A_1 \) (see [14]). Thus

\[(1) \quad (B_{\delta,*}^b(f))^\#(x) \leq C \prod_{j=1}^l \left(\sum_{|\alpha_j| = m_j} \|D^{\alpha_j} b_j\|_{\text{BMO}} \right) M_q(f)(x) \]
for any \(f \in C_0^\infty(\mathbb{R}^n) \) and \(1 < q < \infty \);

\[
(2) \quad \| B_{b,\delta}^\sharp(f) \|_{L^p(\mathbb{R}^n)} \leq C \prod_{j=1}^l \left(\sum_{|\alpha_j| = m_j} \| D^{\alpha_j} b_j \|_{\text{BMO}} \right) \| f \|_{L^p(\mathbb{R}^n)}
\]

for \(0 < D < 2^n \) and any \(w \in A_1, 1 < p < \infty \).

Acknowledgement. The author would like to express his gratitude to the referee for his (or her) comments and suggestions.

References

Sharp and weighted inequalities for multilinear integral operators

Liu Lanzhe
Department of Mathematics
Changsha University of Science and Technology
Changsha 410077
P. R. of China
lanzheliu@163.com