Natural and artificially controlled connections among steady states of a climate model

J. I. Díaz and V. García

Abstract. We consider a discretized a simple climate model of Sellers type and analyze the problem of transferring the system (through some sufficiently large time $T$) from a stationary state to another one in the same connected component.

Conexiones naturales y controladamente artificiales entre los estados estacionarios de un modelo climático

Resumen. Consideramos un modelo climático discretizado de tipo Sellers para el que analizamos las posibilidades de conectar dos estados estacionarios mediante un proceso natural (curva de bifurcación respecto de un parámetro) y mediante la acción de un adecuado control.

1 Introduction

We present here a summary of new results ([6]) on Budyko-Sellers climate models of the type

\[
\begin{cases}
  \frac{dy}{dt} - (k(1 - x^2)y_x)x = R_a(x, y, v) - R_e(y, x, u) & x \in (-1, 1), t > 0, \\
y(x, 0) = y_0(x) & x \in (-1, 1),
\end{cases}
\]

where $k > 0$, $R_a(x, y, v)$ is a bounded increasing function on $y$ (the absorbed energy due to the co-albedo) and $R_e(y, x, u)$ is a strictly increasing function on $y$ (related to the Stefan-Boltzman radiation law with an emissivity $u$ varying in some positive interval). Here $u$ and $v$ are taken as control variables (indicating the anthropogenerated actions on the rate of emissions on the greenhouse gases).

For some purposes it is useful to assume the presence of possible localized controls of the form $u(t)\chi(l_1, l_2)$ and $v(t)\chi(l_1, l_2)$ for some given latitude control interval $(l_1, l_2) \subset (-1, 1)$. We shall assume here that $R_a(x, y, v)$ is closer to the model proposed by Sellers and so $R_a(x, y, v) = (v(t)\chi(l_1, l_2) + 1)QS(x)\beta(y)$ with $\beta$ a Lipschitz continuous, as for instance, $\beta(y) = m$ if $y < y_i$, $\beta(y) = m + \left(\frac{u - u_i}{u_w - u_i}\right)(M - m)$ if $y_i \leq y \leq y_w$, $\beta(y) = M$ if $y > y_w$, where $u_i$ and $u_w$ are fixed temperatures closed to $-10^\circ C$ and $m = \beta_i$ and $M = \beta_w$ represent the coalbedo in the ice-covered zone and the free-ice zone, respectively, $0 < \beta_i < \beta_w < 1$. Moreover, $S(x)$ is the insolation function and $Q$ is the so-called solar constant. We assume $S : [-1, 1] \to \mathbb{R}$, $S \in C^0([-1, 1])$, $S_1 \geq S(x) \geq S_0 > 0$ for any $x \in [-1, 1]$. We also assume that
\[ R_e = (u(t) \chi_{(t_1,t_2)} + 1)G(y) - f(x) \] with \( G : \mathbb{R} \to \mathbb{R} \) a continuous strictly increasing function such that \( G(0) = 0, \lim_{s \to -\infty} |G(s)| = +\infty \) and \( f \in C^0([-1, 1]) \).

Our main goal is to consider the problem of transferring the system from a stationary state to another one. This type of problem was raised by J. von Neumann in a general context ([14], see also [13] and [10]). Our study have two different parts: first we obtain a result on a (naturally) connected branch of stationary solutions (for instance, as function of parameter \( \lambda \) and in the absence of any control: \((l_1, l_2) = (-1, 1)\) and \( u(t) = v(t) \equiv 0 \). In a second part we shall use some techniques of the controllability theory of nonlinear systems of ODEs to analyze the (artificial) transferring question by means of suitable controls.

As as matter of fact, we shall consider here only some simplified versions of problem \((P)\). We shall concentrate our attention in the discrete version of \((P)\) arising by a spatial difference scheme discretization (for a discretization by finite elements see [3]). There are several possible discrete simplified problems. For instance, to avoid technicalities concerning the degenerate diffusion, as in other precedent papers ([5]), we can replace the degenerate linear diffusion operator by the usual uniform diffusion expression but then adding Neumann boundary conditions:

\[
(P_L) \begin{cases}
y_t - ky_{xx} = R_a(x, y, v) - R_e(y, x, u) & x \in (-1, 1), t > 0, \\
y(1, t) = y(-1, t) = 0 & t > 0, \\
y(x, 0) = y_0(x) & x \in (-1, 1).
\end{cases}
\]

Then, a spatial difference scheme discretization of problem \((P_L)\) can be generated in the usual way: given \( N \in \mathbb{N} \), we define \( h = 2/(N - 1) \) and we denote by \( y_i(t) \) to the approximation of \( y(-1 + ih, t) \):

\[
(P_h) \begin{cases}
y_t - A_y y + R_a(y(t), u(t)) - R_e(y(t), v(t)) = 0, \\
y(0) = y_0,
\end{cases}
\]

where \( y(t) := (y_1(t), y_2(t), \ldots, y_N(t))^T, u(t), v(t) \in \mathbb{R} \), with \( u(t) \) and \( v(t) \) appearing only in some coordinates associated to some \( m \in \mathbb{N}, 1 < m \leq N \) (the discretized control interval \((l_1, l_2)\) is here represented by an interval of length \((m - 1)h\) ). Problem \((P_L)\) leads to the symmetric positive definite matrix

\[
A_L = \frac{k}{h^2} \begin{pmatrix}
1 & -1 & 0 & 0 & \ldots & 0 \\
-1 & 2 & -1 & 0 & \ldots & 0 \\
0 & -1 & 2 & -1 & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & \ldots & 0 & -1 & 2 & -1 \\
0 & \ldots & 0 & 0 & -1 & 1
\end{pmatrix},
\]

\[
R_a : \{-1, -1 + h, \ldots, +1\} \times \mathbb{R}^N \times \mathbb{R}^m \to \mathbb{R}^N \text{ is given by}
\]

\[
R_a(x_1, \ldots, x_N, y_1, \ldots, y_N, v_1, \ldots, v_N) = (R_a(x_1, y_1, v_1), \ldots, R_a(x_N, y_N, v_N)^T
\]

and \( R_e : \{-1, -1 + h, \ldots, +1\} \times \mathbb{R}^N \times \mathbb{R}^m \to \mathbb{R}^N \) by

\[
R_e(x_1, \ldots, x_N, y_1, \ldots, y_N, u_1, \ldots, u_N) = (R_e(x_1, y_1(t), u_1), \ldots, R_e(x_N, y_N(t), u_N)^T
\]

where we used the following notation: \( u_j(t) \equiv 0 \) if \( j \) is not one of the \( m \) coordinates where the control is located and \( u_j(t) \equiv u(t) \) otherwise (and analogously for \( v_j(t) \)).

A different discrete approximation of problem \((P)\), which maintains the peculiar degeneracy of the diffusion leads also to the formulation \((P_h)\) but with a different symmetric matrix

\[
A_D = \frac{k}{h^2} \begin{pmatrix}
0 & 0 & 0 & 0 & \ldots & 0 \\
-(1 - x_2^2) & 2(1 - x_2^2) & -(1 - x_2^2) & 0 & \ldots & 0 \\
0 & \ldots & \ldots & \ldots & \ldots & \ldots \\
-(1 - x_{N-1}^2) & 2(1 - x_{N-1}^2) & -(1 - x_{N-1}^2) & 0 & \ldots & 0 \\
0 & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & \ldots & \ldots & \ldots
\end{pmatrix},
\]
which results from the identity \((k(1 - x^2)y_z)_z = k(1 - x^2)y_{zz} - 2kxy_z\) when we neglect the transport term \(2kxy_z\). Note that in that case the first and the last equations of \((P_h)\) are uncoupled.

Although our results are true for a general value of \(N \in \mathbb{N}\), for the sake of simplicity in the exposition, here we shall only consider the case of \(N = 3\) and \(m = 1\) leading to the vectorial formulation

\[
(P_Q) \begin{cases}
  \dot{y}(t) = f(y(t), u(t), v(t), Q), \\
  y(0) = y^0
\end{cases}
\]

with \(f : \mathbb{R}^3 \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}^3\) given by (when \(A = A_N\))

\[
f(y, u, v, Q) = \begin{pmatrix}
  \frac{k}{N^2} (y_2 - y_1) + QS(-1) \beta(y_1) - G(y_1) + f(-1) \\
  \frac{k}{N^2} (y_3 - 2y_2 + y_1) + (v + 1) QS(0) \beta(y_2) - (u + 1) G(y_2) + f(0) \\
  \frac{k}{N^2} (-y_3 + y_2) + QS(1) \beta(y_3) - G(y_3) + f(1)
\end{pmatrix}
\]

and (when \(A = A_D\))

\[
f(y, u, v, Q) = \begin{pmatrix}
  QS(-1) \beta(y_1) - G(y_1) + f(-1) \\
  k(y_3 - 2y_2 + y_1) + (v + 1) QS(0) \beta(y_2) - (u + 1) G(y_2) + f(0) \\
  QS(1) \beta(y_3) - G(y_3) + f(1)
\end{pmatrix}
\]

### 2 A connected set of stationary solutions depending on \(Q\)

In this section we shall assume the absence of any control: \((l_1, l_2) = (-1, 1)\) and \(u(t) = v(t) = 0\). Our main goal is to adapt the results of [7] and [2] to show that the set of stationary solutions \((y^\infty, Q) \in \mathbb{R}^3 \times \mathbb{R}\), i.e. satisfying

\[(P_Q^\infty) \quad f(y^\infty, 1, 1, Q) = 0,
\]

is very large (depending on the parameter \(Q\)). We make the additional assumptions

\[(H_{f, \infty}) \text{ there exist } C_f > 0 \text{ such that } f(x_i) \leq -C_f\]

\[(H_{\beta}) \text{ } \beta \text{ is Lipschitz increasing function and there exists } 0 < m < M \text{ and } \epsilon > 0 \text{ such that } \beta(r) = \{m\} \text{ for any } r \in (-\infty, -10 - \epsilon) \text{ and } \beta(r) = \{M\} \text{ for any } r \in (-10 + \epsilon, +\infty).
\]

We note that since the matrix \(A\) is symmetric (and, at least, semidefinite positive) the strict monotonicity and the coerciveness assumed on \(G\) implies the existence of a unique \(y_m\) (resp. \(y_M\)) solution of the problem \((P_Q^\infty)_m\) (resp. \((P_Q^\infty)_M\)) given by \((P_Q^\infty)\) but replacing \(\beta(y_i)\) by \(m\) (resp. by \(M\)). In the rest of the section we shall use several comparison arguments on \(\mathbb{R}^3\). Here we shall use the following notation: \(y \leq \bar{y}\) if and only if \(y_i \leq \bar{y}_i\) for \(i = 1, 2, 3\). Analogously, the use of the strict inequality \(<\) among vectors means that the strict inequality holds among all the components of the vectors. Finally, if \(\alpha \in \mathbb{R}\) the notation \(\alpha \leq y\) means that \(\alpha_i \leq y_i\) for \(i = 1, 2, 3\).

We start by proving the existence of at least three solutions for suitable \(Q\) (in the line of [7]).

**Theorem 1** Let \(y_m\) (resp. \(y_M\)) be the (unique) solutions of the problem \((P_Q^\infty)_m\) (resp. \((P_Q^\infty)_M\)). Then:

i) for any \(Q > 0\) there is a minimal solution \(\underline{y}\) (resp. a maximal solution \(\overline{y}\)) of \((P_Q^\infty)\). Moreover any other solution \(y\) must satisfy

\[y_m \leq \underline{y} \leq \overline{y} \leq y_M,\]

\[G^{-1}(QS_0m + \min f) \leq (y_m)_i, \leq G^{-1}(QS_1m - C_f) \quad \text{ and } \quad G^{-1}(QS_0M + \min f) \leq (y_M)_i, \leq G^{-1}(QS_1M - C_f) \quad \text{ for } i = 1, 2, 3.
\]

231
If we assume, in addition,
\[(H_{C_f}) \mathcal{G}(-10 - \epsilon) + C_f > 0 \quad \text{and} \quad \frac{\mathcal{G}(-10 + \epsilon) - \min f}{\mathcal{G}(-10 - \epsilon) + C_f} \leq \frac{S_0 M}{S_1 m}\]

and define
\[
Q_1 = \frac{\mathcal{G}(-10 - \epsilon) + C_f}{S_1 M}, \quad Q_2 = \frac{\mathcal{G}(-10 + \epsilon) - \min f}{S_0 M}, \quad Q_3 = \frac{\mathcal{G}(-10 - \epsilon) + C_f}{S_1 m}, \quad Q_4 = \frac{\mathcal{G}(-10 + \epsilon) - \min f}{S_0 m},
\]

then:

i) if \(0 < Q < Q_1\) (resp. \(Q > Q_4\)) then \((\mathbf{P}_Q^\infty)\) has a unique solution \(y = y_M, (y_M)_i < -10, (y_M)_i > -10\) and \(\mathcal{G}^{-1}(\min f) \leq \lim_{Q \searrow 0} \inf \|y\|_\infty \leq \lim_{Q \searrow 0} \sup \|y\|_\infty \leq \mathcal{G}^{-1}(-C_f)\).

ii) if \(Q < Q_2 < Q_3\), then \((\mathbf{P}_Q^\infty)\) has at least three solutions, \(y_i, i = 1, 2, 3\) with \(y_1 = y_M, y_2 = y_M, y_3 \geq y_3 \geq y_2\).

Idea of the proof. i) and ii) are consequence of the fact that the comparison principle holds for problems \((\mathbf{P}^\infty_m, \mathbf{P}^\infty_M)\) (since the systems are of cooperative type) and then the method of sub and supersolutions can be applied (see e.g. Pao [15]). The proof of iii) is divided into several steps. First, we construct two constant subsolutions \(V_i\) and two constant supersolutions \(U_i\) such that \(V_1 < U_2 < -10 - \epsilon < -10 + \epsilon < V_1 < U_1\), proving the existence of, at least, two solutions of \((\mathbf{P}_0^\infty)\). The existence of a third solution of \((\mathbf{P}_Q^\infty)\) is obtained by a topological fixed point argument. Let us show the convergence of the mentioned solution of \((\mathbf{P}_0^\infty)\) to a third solution of \((P_{Q,f})\).

For \(\lambda < \lambda_0\) (a certain positive parameter) \(V_1, U_2\) are supersolutions of \((\mathbf{P}_Q^\infty)\) and \(V_1, V_2\) are subsolutions of \((\mathbf{P}_Q^\infty)\). So, arguing as in i) we obtain two solutions \(y_1\) and \(y_2\) of \((\mathbf{P}_Q^\infty)\) such that \(-10 + \epsilon + \lambda_0 M < V_1 \leq y_1 \leq U_1\) and \(V_2 \leq y_2 \leq U_2 < -10 - \epsilon\). In order to prove that \((\mathbf{P}_Q^\infty)\) has a third solution \(y_3\) different to \(y_1\) and \(y_2\) we apply a result due to Amann [1] (which is justified since the operator \(F(z) := (A + \mathcal{G})^{-1}(QS(z)) \beta(z) + f\) is compact on the space \(E = \mathbb{R}^3\)).

Now we can show that it is possible to associate a bifurcation diagram for the special case of \(f(x_1) = -C_f, (x_1)_i > 0\) and \(\mathcal{G}(-10 + \epsilon) + C > 0 \quad \text{and} \quad \frac{\mathcal{G}(-10 + \epsilon) + C}{\mathcal{G}(-10 - \epsilon) + C} \leq \frac{S_2 M}{S_1 m}\).

**Theorem 2** If we denote by \(\Sigma\) the set of pairs \((Q, y) \in \mathbb{R}^+ \times \mathbb{R}^3\), where \(y\) verifies \((\mathbf{P}_Q^\infty)\) then \(\Sigma\) contains an unbounded connected component containing the point \((0, \mathcal{G}^{-1}(-C))\).

**Proof.** We claim that the following result [16] can be applied to our case: “Let \(E\) be a Banach space. If \(F : \mathbb{R} \times E \to E\) is compact and \(F(0, u) \equiv 0\), then \(\Sigma\) contains a pair of unbounded components \(C^+\) and \(C^-\) in \(\mathbb{R}^+ \times \mathcal{E}\) respectively and \(C^+ \cap C^- = \{(0, 0)\}\). In order to do that we consider the translation of \(y\) given by \(z := y - \mathcal{G}^{-1}(-C)\). Obviously, \(z\) is a solution of \((\mathbf{P}_0^\infty)\) with \(\beta^*(\sigma) = \mathcal{G}(\sigma + \mathcal{G}^{-1}(-C)) + C\) and \(\beta^*(\sigma) = \beta(\sigma + \mathcal{G}^{-1}(-C))\). We define \(\hat{\Sigma}\) in an analogous way to \(\Sigma\). Let \(E = \mathbb{R}^3\) and define \(F(z) := (A + \mathcal{G})^{-1}(Q \mathcal{S}(\cdot) \beta(z) + f)\) is compact on the space \(E = \mathbb{R}^3\). On the other hand, if \(Q = 0\) problem \((\mathbf{P}_Q^\infty)\) has a unique solution \(v = 0\), so \(F(0, v) = 0\). In conclusion \(\Sigma\) contains two unbounded components \(C^+\) and \(C^-\) on \(\mathbb{R}^+ \times \mathbb{R}^3\) and \(\mathbb{R}^- \times \mathbb{R}^3\) respectively and \(C^+ \cap C^- = \{(0, 0)\}\). Since \(\Sigma\) is a translation of \(\hat{\Sigma}\) then \(\Sigma\) contains two unbounded components \(C^+\) and \(C^-\) on \(\mathbb{R}^+ \times \mathbb{R}^3\) and \(\mathbb{R}^- \times \mathbb{R}^3\) respectively and that \(C^+ \cap C^- = \{(0, 0)\}\). Since \(Q \geq 0\) in the studied model, we are interested in \(C^+\). In order to establish the behaviour of \(C^+\), we also recall that for every \(q > 0\) there exists a constant \(L = L(q)\) such that if \(0 \leq Q \leq q\) then every solution \(y_Q\) of \((\mathbf{P}_Q^\infty)\) verifies \(\|y_Q\|_\infty \leq L(q)\). Since the principal component
is unbounded its projection over the Q-axis is \([0, \infty)\). On the other hand, if \(Q\) is large enough \((\mathbf{P}_Q^\infty)\) has a unique solution \(y_Q\) and this solution is greater than \(G^{-1}(QS_0 M - C)\). Since \(\lim_{|s|\to\infty} |G(s)| = +\infty\), then the unbounded branch \(C^+\) containing \((0, G^{-1}(-C))\) should go to \((\infty, \infty)\).

**Remark 1** In the continuous problem it is well known that there are many other solutions which do not belong to the branch \(C^+\) of the above proof (see [8]). In some special cases (for instance, the zero-dimensional model: \(k = 0\) and constant coefficients) it is possible to characterize the different parts of the branch corresponding to stable (and unstable) solutions. Moreover, under symmetry conditions on \(S(x)\) and \(f(x)\) the branch \(C^+\) is formed by symmetry stationary solutions \((y)_1 = (y)_3\).

### 3 Connecting stationary solutions by means of controls

We consider the problem of transferring the system from a stationary state to another one (when \(Q = Q_0\) is fixed) but now by means of suitable choices of the controls \(u(t)\) and \(v(t)\). In fact, we shall consider here only the case of a single control \(v(t)\) and when both solutions are in the same connected component (the branch \(C^+\)). For the sake of simplicity, we shall consider the connection between an arbitrary (possibly unstable) symmetric state \((y^0, (v^0 + 1)Q_0)\) to a final stable symmetric one \((y^f, (v^f + 1)Q_0)\), both in the principal branch \(C^+\). The case when \(v(t)\) is fixed and the only control is \(u(t)\) follows the same arguments. Finally, the case of two controls \(u(t)\) and \(v(t)\) is even easier. We first extend, in [6], the obstructions results of [5] to the case of the controls \(u \equiv 0\) but \(v \neq 0\) and localized. Spike of it, our results prove that if the final state is a stationary state the problem is controllable. We start with the uniform diffusion case \(\mathbf{A} = \mathbf{A}_N\) with Neumann boundary conditions

**Theorem 3**

i) Assume \(\mathbf{A} = \mathbf{A}_N\), \(u(t) \equiv 0\) and that the control \(v(t)\) acts globally in space \((l_1, l_2) = (-1, 1)\). Let \((y^f, Q_0(v^f + 1))\) be a stable symmetric stationary solution in the branch \(C^+\). Then, for any other symmetric state \((y^0, (v^0 + 1)Q_0)\) in \(C^+\) there exists a time \(T > 0\) and a piece-wise continuous control \(v \in L^\infty(0, T)\) with \(v(0) = v^0\) and \(v(T) = v^f\) such that the solution \(y(t)\) of the problem \((\mathbf{P}_{Q_0})\) with initial datum \(y^0\) verifies that \(y(T) = y^f\).

ii) In the case of a localized control \((l_1, l_2) \subseteq (-1, 1)\) the same conclusion holds when, in addition, \((y^0, (v^0 + 1)Q_0)\) and \((y^f, (v^f + 1)Q_0)\) are closed enough.

**Proof.** We divide the proof of i) in two different steps. In the first step, given an small \(\epsilon > 0\) we connect \((y^0, (v^0 + 1)Q_0)\) with a point \((y^f, Q_0(v^f + 1))\) by means of the branch of stationary solutions \(C^+\) and so, by means of a parametrization \((y^*(x), Q(x))\) with \(Q(x) = (1 - \tau)(v^0 + 1)Q_0 + \tau(v^f + 1)Q_0\) for \(\tau \in [0, 1]\). Obviously, this orbit does not need to be a solution of \((\mathbf{P}_{Q_0})\) but, given \(\epsilon > 0\), we can construct the function \([0, 1/\epsilon] \to \mathbb{R}^3 \times \mathbb{R}\) given by \((y^*(x), v^*(x)) = ((y^*(x), Q(x))\) which is “almost” a solution since \(\|\bar{y}(t) - f(y(t), 1, v(t), Q)\| = O(\epsilon)\). Then, since \((y^f, (v^f + 1)Q_0)\) is stable we can assume that \(y^*(T_\epsilon)\) (with \(T_\epsilon = 1/\epsilon\)) is near \(y^f\). The second step consists in to connect \(y^*(T_\epsilon)\) with \(y^f\) by means of a control \(\bar{v}(t)\) for \(t \in [T_\epsilon, T]\) and for some \(T > T_\epsilon\). This can be done thanks to well-known results (see, e.g. [12, 17]) since the Kalman’s condition for the linearized equation, near \((y^f, (v^f + 1)Q_0)\)/ holds. Note that due to the symmetry assumption we can reduce the system \((\mathbf{P}_{Q_0})\) to a system of only two equations leading to a linearization \(y(t) = C y(t) + Bu(t)\) where \(C = \nabla_y f(y^f, (v^f + 1)Q_0)\) and \(B = \nabla_v f(y^f, (v^f + 1)Q_0)\), and so the Kalman’s condition \(\text{Range}(B, CB) = 2\) holds. ii) For a localized control \(v(t)\) appearing only in the second equation of \((\mathbf{P}_{Q_0})\) the argument of connecting branch of stationary solutions \(C^+\) may fail but at least we can apply the local controllability results for nonlinear equations since the Kalman’s condition holds.

**Remark 2** It is a curious fact that, in the case of the original 3-system \((\mathbf{P}_{Q_0})\), the necessary and sufficient condition in order to have the Kalman’s condition for the linearized equation allows to see that there are other solutions (not necessarily symmetric) which does not satisfy it.
Remark 3 The controllability aspects for the degenerate case $A = AD$ are considered also in [6].

Acknowledgement. The research of J. I. Díaz was partially supported by the projects MTM2005-03463 of the DGISGPI (Spain) and CCG06-UCM/ESP-1110 of the DGUIC of the CAM and the UCM.

References


