Holomorphically Dependent Generalised Inverses

Seán Dineen and Milena Venkova

Abstract. In this article we investigate when the pointwise existence of a generalised inverse for holomorphic operator-valued mappings defined on domains in a Banach space implies the existence of a holomorphic generalised inverse.

1 Introduction

Let f denote a holomorphic mapping from a domain Ω in a Banach space into $\mathcal{L}(X, Y)$, the space of continuous linear mappings from the Banach space X into the Banach space Y. Over many years different authors, e.g. [1, 2, 4, 5, 7, 12], have considered when pointwise invertibility properties, of various kinds, imply the existence of a globally smooth inverse of the same kind. For example, if $f(z)$ has a right inverse for each $z \in \Omega$ does there exist g, holomorphic on Ω with values in $\mathcal{L}(Y, X)$, such that $g(z)$ is a right inverse for $f(z)$ for all $z \in \Omega$? In this paper we continue our investigations of such problems. Many results are known when Ω is a domain in a finite dimensional space and our interest is focused on the problems that arise when Ω is a domain in an infinite dimensional space.

We refer to [6, 10] for background information on operators between Banach spaces, to [3, 9] for the theory of holomorphic mappings on Banach spaces and to [6, 7, 12] for classical results on holomorphic dependence of operator-valued functions over finite dimensional complex manifolds.

2 Linear Preliminaries

If X and Y are Banach spaces over \mathbb{C}, $\mathcal{L}(X, Y)$ will denote the space of all continuous linear operators from X to Y and $GL(X, Y)$ will denote the set of all invertible linear operators from X to Y. If X and Y are subspaces of the Banach space Z we use the notation $Z = X \oplus Y$ to indicate that X and Y are closed complemented subspaces of Z and that Z is the direct sum of X and Y. We let $\mathcal{H}(\Omega, X)$ denote the set of all X-valued holomorphic mappings defined on an open subset Ω of a Banach space. We also use the standard notation $\mathcal{L}(X) := \mathcal{L}(X, X)$ and $GL(X) := GL(X, X)$.

Presentado por / Submitted by Amable Liñán Martínez
Recibido / Received: 11 de octubre de 2009. Aceptado / Accepted: 14 de enero de 2008.
Palabras clave / Keywords: Generalised inverse, complemented subspace, vector bundle, unconditional basis, projection.
Mathematics Subject Classifications: 46G20.
Definition 1. Let \(T \in \mathcal{L}(X, Y) \). If \(S \in \mathcal{L}(Y, X) \) and \(TST = T \) we call \(S \) a pseudo-inverse for \(T \). If, in addition, \(STS = S \) we call \(S \) a generalised inverse for \(T \). If \(TS = 1_Y \) we call \(S \) a right inverse for \(T \). The operator \(T \) is called splitting if \(\ker(T) \) and \(\im(T) \) are complemented in \(X \) and \(Y \) respectively.

The following proposition contains some important known results about generalised inverses ([2, 12]).

Proposition 1. If \(X \) and \(Y \) are Banach spaces and \(T \in \mathcal{L}(X, Y) \) then the following are equivalent:

(a) \(T \) has a pseudo-inverse,
(b) \(T \) has a generalised inverse,
(c) \(T \) is a splitting operator.

Right inverses are generalised inverses and generalised inverses are pseudo-inverses. If \(S \) is a pseudo-inverse for \(T \) then \(STS \) is a generalised inverse for \(T \).

We require the following construction of a generalised inverse. Let \(T \in \mathcal{L}(X, Y) \) and suppose \(X = \ker(T) \oplus X_1 \) and \(Y = Y_1 \oplus \im(T) \) are direct sum decompositions. The restriction of \(T \) to \(X_1 \), \(T_{R_1} \), is a continuous bijective linear mapping from \(X_1 \) onto \(\im(T) \) and, by the open mapping theorem, a continuous inverse, \(T_{R_1}^{-1} \). We define \(S : Y \to X \) by letting \(S(y_1 + y_2) = T_{R_1}^{-1}(y_2) \) for \(y_1 \in Y_1 \) and \(y_2 \in \im(T) \). If \(x_1 \in \ker(T) \) and \(x_2 \in X_1 \) then
\[
TST(x_1 + x_2) = TST(x_2) = T(T_{R_1}^{-1}T(x_2)) = T(x_2) = T(x_1 + x_2)
\]
and \(TST = T \). Moreover, if \(y_1 \in Y_1 \) and \(y_2 \in \im(T) \), then
\[
STS(y_1 + y_2) = S(TT_{R_1}^{-1}(y_2)) = S(y_2) = S(y_1 + y_2),
\]
and \(S \) is a generalised inverse for \(T \).

Lemma 1. If \(P \) and \(Q \) are projections in \(\mathcal{L}(X) \) and \(\|P - Q\| < 1 \) then \((1_X - P + Q) \in GL(X)\) and \((1_X - P + Q)(P(X)) = Q(X)\). In particular, \(P(X) \simeq Q(X)\).

Proof. Let \(R := 1_X - P + Q \). Since \((1_X - P + Q)P = PQ\) we have
\[
R(P(X)) = (1_X - P + Q)(P(X)) \subseteq Q(X). \tag{1}
\]
Since \(\|P - Q\| < 1 \), \(R := 1_X - P + Q \in GL(X) \) and
\[
R^{-1} = (1_X - P + Q)^{-1} = \sum_{n=0}^{\infty} (P - Q)^n = \left[\sum_{n=0}^{\infty} (P - Q)^{2n} \right] (1_X + P - Q).
\]
Interchanging \(P \) and \(Q \) in (1) we obtain \((1_X - Q + P)(Q(X)) \subseteq P(X)\) and as \((P - Q)^2 P = P(1_X - QP)\) we see that \((P - Q)^2 P(X) \subseteq P(X)\). Hence \(R^{-1}(Q(X)) \subseteq P(X) \) and \(Q(X) \subseteq R(P(X)) \). Combining this with (1) completes the proof. \(\square \)

3 Vector Bundles

In this section we recall the definition of holomorphic Banach vector bundles and generalise to Banach spaces a result of Shubin [11] (see also [12, Theorem 3.11]).

Let \(\pi : E \to \Omega \) be a surjective holomorphic map of complex Banach manifolds. We assume that the fibre above \(z \in \Omega \), \(E_z := \pi^{-1}(z) \), has been given a Banach space structure whose topology coincides with the topology induced from \(E \). A collection \((U_\alpha, \tau_\alpha)_{\alpha \in \Lambda}\) is called a trivialising cover for \(\pi \) if \((U_\alpha)_{\alpha \in \Lambda}\) is an open cover of \(\Omega \) and for each \(\alpha \in \Lambda \) there is a Banach space \(X_\alpha \) such that \(\tau_\alpha : \pi^{-1}(U_\alpha) \to U_\alpha \times X_\alpha \) is a biholomorphic mapping and conditions (i), (ii) and (iii) below are satisfied.
(i) $\tau_{\alpha,z} := \tau_{\alpha}|E_z$ is a linear isomorphism1, from E_z onto X_α for each $z \in U_\alpha$.

(ii) $\pi|_{\tau^{-1}(U_\alpha)} = \pi_\alpha \circ \tau_\alpha$, where π_α is the canonical projection from $U_\alpha \times X_\alpha$ onto U_α.

Conditions (i) and (ii) imply that $\rho_{\alpha\beta} := \tau_{\alpha} \circ \tau^{-1}_{\beta}|_{U_{\alpha}\times X_\beta}$ has the form $\rho_{\alpha\beta}(z,x) = (z, g_{\alpha\beta}(z)x)$, where $g_{\alpha\beta}(z) \in \mathcal{L}(X_\beta, X_\alpha)$ and $x \in X_\beta$ whenever $\alpha, \beta \in \Lambda$ and $z \in U_{\alpha\beta} := U_\alpha \cap U_\beta \neq \emptyset$.

(iii) If $\alpha, \beta \in \Lambda$ and $U_\alpha \cap U_\beta \neq \emptyset$ then the map $z \mapsto g_{\alpha\beta}(z)$ from $U_{\alpha\beta}$ into $\mathcal{L}(X_\beta, X_\alpha)$ is holomorphic.

Two trivialising covers are said to be equivalent if their union is also a trivialising cover.

Definition 2. A holomorphic vector bundle is a triple $(\mathcal{E}, \pi, \Omega)$, where $\pi : \mathcal{E} \to \Omega$ is a surjective holomorphic map of complex Banach manifolds, together with a class of equivalent trivialising covers for π.

We call \mathcal{E} the **bundle space**, π the **projection** of the bundle, Ω the **base** of the bundle, $\{\tau_\alpha : \pi^{-1}(U_\alpha) \to U_\alpha \times X_\alpha\}$, $(U_\alpha, \tau_\alpha, X_\alpha)$, (U_α, τ_α) or just τ_α a **trivialization** of $\pi^{-1}(U_\alpha)$ and $g_{\alpha\beta}$ a transition map. Note that $g_{\alpha\alpha}(z) = 1_{X_\alpha}$ for all $z \in U_\alpha$, $g_{\alpha\beta}g_{\beta\gamma} = g_{\alpha\gamma}$, on $U_{\alpha\beta\gamma} := U_\alpha \cap U_\beta \cap U_\gamma \neq \emptyset$, and $g_{\alpha\beta}(z)^{-1} = g_{\beta\alpha}(z)$ for all $z \in U_{\alpha\beta}$.

For convenience, we often write \mathcal{E} in place of $(\mathcal{E}, \pi, \Omega)$.

If X is a Banach space and Ω is a complex manifold, the triple $(\Omega \times X, \pi, \Omega)$, where π is the canonical projection from $\Omega \times X$ onto Ω, together with the covering trivialisation $(1_{\Omega \times X}, \Omega \times X \to \Omega \times X)$ is called the **trivial bundle**. If \mathcal{E} is a holomorphic vector bundle and (U, τ, X) is a trivialisation of $\pi^{-1}(U)$ then $E_U := (\pi^{-1}(U), \pi|_{\pi^{-1}(U)}, U)$ is a trivial bundle with covering trivialisation (U, τ, X).

A **holomorphic section** of the holomorphic vector bundle $(\mathcal{E}, \pi, \Omega)$ is a holomorphic mapping $f : \Omega \to \mathcal{E}$ such that $\pi \circ f = 1_{\Omega}$. We let $\Gamma(\mathcal{E})$ denote the set of all holomorphic sections of \mathcal{E}. For any complex manifold Ω and any Banach space X, $\Gamma(\Omega \times X) \simeq \mathcal{H}(\Omega, X)$.

In proving the main result in this section we require the following important theorem of Lempert [8].

Theorem 1. Let Z be a Banach space with an unconditional basis, $\Omega \subset Z$ pseudo-convex open, \mathcal{E} a holomorphic Banach vector bundle, then the sheaf cohomology groups $H^q(\Omega, \mathcal{E})$ vanish for all $q \geq 1$.

Let $(U_\alpha)_{\alpha \in \Gamma}$ be an open covering of Ω. A **Cousin data** for $(U_\alpha)_{\alpha \in \Gamma}$ is a collection of functions $f_{\alpha\beta} \in \mathcal{H}(U_{\alpha\beta}, \mathcal{E})$ satisfying $f_{\alpha\beta} + f_{\beta\alpha} = 0$ on $U_{\alpha\beta} := U_\alpha \cap U_\beta \neq \emptyset$, and $f_{\alpha\beta} + f_{\beta\gamma} + f_{\gamma\alpha} = 0$ on $U_{\alpha\beta\gamma} := U_\alpha \cap U_\beta \cap U_\gamma$ whenever $U_{\alpha\beta\gamma} \neq \emptyset$. The **additive Cousin problem** consists in finding $f_\alpha \in \mathcal{H}(U_\alpha, \mathcal{E})$, for all α, such that

$$f_\alpha|_{U_{\alpha\beta}} - f_\beta|_{U_{\alpha\beta}} = f_{\alpha\beta}$$

whenever $U_{\alpha\beta} \neq \emptyset$. Since the Cousin data form a 1-cocycle, when $q = 1$ Theorem 1 implies the following result.

Corollary 1. Let Z be a Banach space with an unconditional basis, Ω be a pseudo-convex open subset of Z, and $(\mathcal{E}, \pi, \Omega)$ a holomorphic Banach vector bundle. If $(U_\alpha)_{\alpha \in \Gamma}$ is an open cover of Ω and $f_{\alpha\beta} \in \mathcal{H}(U_{\alpha\beta}, \mathcal{E})$ is a Cousin data then the corresponding Cousin problem is solvable.

Example 1. If $(\mathcal{E}, \pi, \Omega)$ is a holomorphic vector bundle we let $\mathcal{L}(\mathcal{E}) = \bigcup_{z \in \Omega} \mathcal{L}(E_z)$ and let $\theta(T_z) = z$ for all $T_z \in \mathcal{L}(E_z)$. Then $\theta : \mathcal{L}(\mathcal{E}) \to \Omega$ is surjective and $\theta^{-1}(\{z\}) = \mathcal{L}(E_z) \subset \mathcal{L}(\mathcal{E})$. We endow $\mathcal{L}(\mathcal{E})_z$ with the Banach space structure from $\mathcal{L}(E_z)$. Let $\{\tau_\alpha : \pi^{-1}(U_\alpha) \to U_\alpha \times X_\alpha\}_{\alpha \in \Lambda}$ be a trivialising cover for \mathcal{E}. For $z \in U_\alpha$ and $T_z \in \mathcal{L}(E_z)$ let

$$\hat{\tau}_z : \theta^{-1}(U_\alpha) \to U_\alpha \times \mathcal{L}(X_\alpha)$$

be a bijective mapping and $\hat{\tau}_{\alpha,z} : \mathcal{L}(E)_z \to \mathcal{L}(X_\alpha)$ is a continuous linear mapping for all $z \in U_\alpha$. If

1Here and elsewhere we identify, when necessary, $\{z\} \times X_\alpha$ and X_α.
then, for \(z \in U_{\alpha \beta} \) and \(T \in L(X_\beta) \), we have
\[
\hat{\tau}_{\alpha \beta}(z, T) = (z, \rho_{\alpha \beta}(z) \circ T \circ g_{\beta \alpha}(z))
\]
where, as previously, \(\rho_{\alpha \beta} \), and the transition mappings \(g_{\alpha \beta} \) are defined by
\[
\rho_{\alpha \beta}(z, x) := \tau_{\alpha} \circ \tau_{\beta}^{-1}(z, x) =: (z, g_{\alpha \beta}(z)x)
\]
for \(z \in U_{\alpha \beta} \) and \(x \in X_\beta \). This implies that \(\hat{\tau}_{\alpha \beta} \) is biholomorphic for all \(\alpha, \beta \in \Lambda \) whenever \(U_{\alpha \beta} \neq \emptyset \). The bijective mappings \(\hat{\tau}_{\alpha \beta} \) can now be used with (2) to define a unique complex manifold structure on \(L(E) \) such that \(\hat{\tau}_{\alpha} : \theta^{-1}(U_\alpha) \to U_\alpha \times L(X_\alpha) \) is biholomorphic for all \(\alpha \) and such that \((L(E), \theta, \Omega) \) is a holomorphic vector bundle with trivialising cover \((U_\alpha, \hat{\tau}_{\alpha})_{\alpha \in \Lambda}\). This bundle has transition maps \(\hat{\tau}_{\alpha \beta} \in H(U_{\alpha \beta}, L(L(X_\beta), L(X_\alpha))) \) where
\[
\left[\hat{g}_{\alpha \beta}(z) \right](T) = g_{\beta \alpha}(z) \circ T \circ g_{\alpha \beta}(z)
\]
for \(z \in U_{\alpha \beta} \) and \(T \in L(X_\beta) \).

A sub-bundle of \((E, \pi, \Omega)\) is a bundle \((F, \eta, \Omega)\) where \(F \) is a subset of \(E \), \(\eta = \pi|_F \), \(F_z \) is a closed subspace of \(E_z \) for all \(z \in \Omega \) and the following condition holds:

There exists a trivialising cover \(\{ \tau_\alpha : \pi^{-1}(U_\alpha) \to U_\alpha \times X_\alpha \}_{\alpha \in \Lambda} \) for \(E \), and a collection of Banach spaces \((Y_\alpha)_{\alpha \in \Lambda}, Y_\alpha \subset X_\alpha \) such that \(\{ \tau_{\alpha |_{\eta^{-1}(U_\alpha)}} : \eta^{-1}(U_\alpha) \to U_\alpha \times Y_\alpha \}_{\alpha \in \Lambda} \) is a trivialising cover for \(F \).

Note that a sub-bundle is defined locally, that is given a bundle \((E, \pi, \Omega)\) and an open cover of \(\Omega, (U_\alpha) \), and for each \(\alpha \) a sub-bundle \(F_\alpha \) of \(E_{|U_\alpha} \), then there exists a unique sub-bundle \(F \) of \(E \) such that \(F_{|U_\alpha} = F_\alpha \).

This means that we may and do identify \(Y_\alpha \) with a subspace of \(X_\alpha \) and, moreover, that \([g_{\alpha \beta}(z)]Y_\beta = Y_\alpha \) for the transition functions \(g_{\alpha \beta} \) where \(z \in U_{\alpha \beta} \) and \(\alpha, \beta \in \Lambda \). If each \(Y_\alpha \) is a complemented subspace of \(X_\alpha \), the sub-bundle is called a direct sub-bundle.

Sub-bundles can also be characterised by using transition functions. Suppose we are given a trivialising cover \(\{ \tau_\alpha : \pi^{-1}(U_\alpha) \to U_\alpha \times X_\alpha \}_{\alpha \in \Lambda} \) for \(E \) with transition functions \((g_{\alpha \beta})_{\alpha \beta \in \Lambda} \), and a collection of Banach spaces \((Y_\alpha)_{\alpha \in \Lambda}, Y_\alpha \subset X_\alpha \) such that \([g_{\alpha \beta}(z)]Y_\beta \subset Y_\alpha \) for all \(\alpha, \beta \in \Lambda \) and all \(z \in U_\alpha \cap U_\beta \). Since \(g_{\alpha \beta}(z)^{-1} = g_{\beta \alpha}(z) \) this implies
\[
[g_{\alpha \beta}(z)]Y_\beta = Y_\alpha
\]
for all \(z \in U_{\alpha \beta} \). Let \(F = \cup_{\alpha \in \Lambda} \pi^{-1}(U_\alpha \times Y_\alpha), \eta = \pi|_F \) and \(\varphi_\alpha = \tau_{\alpha |_{\eta^{-1}(U_\alpha)}} \) for all \(\alpha \in \Lambda \). Then \(\varphi_{\alpha \beta ; \eta^{-1}(z)} = F_z \to \{ z \} \times Y_\alpha \) is bijective and the Banach space \(E_z \) induces on \(F_z \) a Banach space structure. Since each \(\varphi_\alpha \) is the restriction of a bijective mapping it also is bijective onto its image and as \(\varphi_{\alpha \beta} := \varphi_\alpha \circ \varphi_{\beta}^{-1}(z, y) = (z, g_{\alpha \beta}(z)y) \) for all \((z, y) \in U_{\alpha \beta} \times Y_\beta \) we see, by (3), that \((F, \varphi, \Omega)\) is a holomorphic vector bundle with trivialising cover \(\{ \varphi_\alpha : \eta^{-1}(U_\alpha) \to U_\alpha \times Y_\alpha \}_{\alpha \in \Lambda} \). Since \(\varphi_\alpha = \tau_{\alpha |_{\eta^{-1}(U_\alpha)}} \), \(F \) is a sub-bundle of \(E \).

Example 2. Let \((F, \eta, \Omega)\) be a sub-bundle of the holomorphic vector bundle \((E, \pi, \Omega)\). By definition we can find a trivialising cover for \(\pi, \{ \tau_\alpha : \pi^{-1}(U_\alpha) \to U_\alpha \times X_\alpha \}_{\alpha \in \Lambda} \) and a collection of Banach spaces \((Y_\alpha)_{\alpha \in \Lambda}, Y_\alpha \subset X_\alpha \) such that \(\{ \tau_{\alpha |_{\eta^{-1}(U_\alpha)}} : \eta^{-1}(U_\alpha) \to U_\alpha \times Y_\alpha \}_{\alpha \in \Lambda} \) is a trivialising cover for \(\eta \). Let \((L(E), \theta, \Omega)\) denote the holomorphic vector bundle with trivialising cover \(\{ \hat{\tau}_\alpha : \theta^{-1}(U_\alpha) \to U_\alpha \times L(X_\beta) \}_{\alpha \in \Lambda} \) constructed in Example 1.

For each \(\alpha \in \Lambda \) let
For \(\alpha, \beta \in \Lambda, z \in U_{\alpha \beta} \) and \(T \in Z_\beta \) we have
\[
[g_{\alpha \beta}(z)(T)](X_\alpha) \subset g_{\alpha \beta}(z) \circ T(g_{\beta \alpha}(z)X_\alpha)
\subset g_{\alpha \beta}(z) \circ T(X_\beta)
\subset g_{\alpha \beta}(z)(Y_\beta)
\subset Y_\alpha
\]
and
\[
[g_{\alpha \beta}(z)(T)](Y_\alpha) \subset g_{\alpha \beta}(z)(T(Y_\beta)) = \{0\}.
\]
Hence \(g_{\alpha \beta}(z)(Z_\beta) \subset Z_\alpha \) for all \(z \in U_{\alpha \beta} \). This implies, following our discussion above, that \(L(E \otimes F) := \bigcup_{\alpha \in \Lambda} g_{\alpha^{-1}} \) can be endowed with the structure of a sub-bundle of \(L(E) \).

An endomorphism of the holomorphic vector bundle \((E, \pi, \Omega) \) is a holomorphic mapping \(f: E \to E \) such that \(f \circ \pi = \pi \), \(f_z := f|_{E_z} \) is a continuous linear mapping for all \(z \in \Omega \), and the mapping
\[
z \in U \longrightarrow \tau_z \circ f_z \circ \tau_z^{-1} \in L(X)
\]
is holomorphic for any trivialising map \(\tau: \pi^{-1}(U) \to U \times X \). We denote by \(\mathcal{M}(E) \) the set of all endomorphisms of \(E \). If \(f_z^2 = f_z \) for all \(z \in \Omega \) we call \(f \) a projection.

Using the notation of Examples 1 and 2 we see that the mapping
\[
\theta: \mathcal{M}(E) \longrightarrow \Gamma(L(E)), \quad [\theta(A)](z) := A|_{E_z}
\]
is bijective and, moreover, if \(F \) is a sub-bundle of \(E \) then
\[
A(E) \subset F \iff [\theta(A)](z)E_z \subset F_z \quad \text{for all } z \in \Omega
\]
and
\[
A(F) = \{0\} \iff [\theta(A)](z)\{0\} \subset F_z \quad \text{for all } z \in \Omega.
\]
Clearly \(A \in \mathcal{M}(E) \) is a projection if and only if \([\theta(A)](z) \) is a (linear) projection for all \(z \in \Omega \). For the trivial bundle, \(\mathcal{M}(\Omega \times X) \simeq \mathcal{H}(\Omega, L(X)) \).

Proposition 2. Let \(\Omega \) be a pseudo-convex open subset of a Banach space with an unconditional basis. If \(F := (F, \eta, \Omega) \) is a sub-bundle of the holomorphic vector bundle \((E, \pi, \Omega) \) then \(F \) is a direct sub-bundle if and only if \(\exists \) a projection \(p \in \mathcal{M}(E) \) such that \(p(E) = F \).

Proof. We first suppose that \(F \) is a direct sub-bundle of \(E \). Let \(\{\tau_\alpha: \pi^{-1}(U_\alpha) \to U_\alpha \times X_\alpha\}_{\alpha \in \Lambda} \) denote a trivialising cover for \(E \) such that \(\{\tau_\alpha|_{\pi^{-1}(U_\alpha)}: \eta^{-1}(U_\alpha) \to U_\alpha \times X_\alpha\}_{\alpha \in \Lambda} \) is a trivialising cover for \(F \). By our hypothesis \(Y_\alpha \) is a complemented subspace of \(X_\alpha \) and we let \(P_\alpha \in \mathcal{L}(X_\alpha) \) denote a continuous projection onto \(Y_\alpha \) for each \(\alpha \in \Lambda \). For each \(\alpha \) let \(E_\alpha \) denote the holomorphic vector bundle \(\pi^{-1}(U_\alpha), \pi|_{\pi^{-1}(U_\alpha)}, U_\alpha \) with trivialising cover \((U_\alpha, \tau_\alpha, X_\alpha) \). Then \(F_\alpha := (\eta^{-1}(U_\alpha), \eta|_{\eta^{-1}(U_\alpha)}, U_\alpha) \) with trivialising cover \((U_\alpha, \tau_\alpha|_{\eta^{-1}(U_\alpha)}, Y_\alpha) \) is a direct sub-bundle of \(E_\alpha \). We define \(f_\alpha: E_\alpha \to E_\alpha \) as follows: if \(z \in U_\alpha \) let \(f_{\alpha,z} := f_{\alpha,z} \) where
\[
f_{\alpha,z}(\xi) = \tau_{\alpha,z}^{-1} \circ P_\alpha \circ \tau_{\alpha,z}(\xi)
\]
for all $\xi \in \mathcal{E}_z$. Then $f_{\alpha,z} \in \mathcal{L}(\mathcal{E}_z)$ is a projection with $f_{\alpha,z}(\mathcal{E}_z) = \mathcal{F}_z$ for all $z \in U_{\alpha}$. Since $\tau_{\alpha,z} \circ f_{\alpha} \circ \tau^{-1}_{\alpha} = P_{\alpha}, f_{\alpha} \in \mathcal{M}(\mathcal{E}_\alpha)$ and $f_{\alpha}(\mathcal{E}_\alpha) = \mathcal{F}_\alpha$.

If $\alpha, \beta \in \Lambda$ and $U_{\alpha\beta} \neq \emptyset$ let $f_{\alpha\beta} = f_{\alpha}|_{\mathcal{E}_\alpha} - f_{\beta}|_{\mathcal{E}_\alpha}$. Then $f_{\alpha\beta} \in \mathcal{M}(\mathcal{E}_{\alpha\beta})$ and $f_{\alpha\beta}(\mathcal{E}_{\alpha\beta}) \subset \mathcal{F}_{\alpha\beta}$.

Since $f_{\alpha}(\xi) = f_{\beta}(\xi) = \xi$ for all $z \in U_{\alpha\beta}$ and all $\xi \in \mathcal{F}_z$, $f_{\alpha\beta}(\mathcal{F}_{\alpha\beta}) = \{0\}$. By (5) we can identify $f_{\alpha\beta}$ with $g_{\alpha\beta} \in \Gamma(\mathcal{L}(\mathcal{E}_{\alpha\beta}) \Box \mathcal{F}_{\alpha\beta})$. Since $(g_{\alpha\beta})_{\alpha,\beta} \in \Lambda$ forms a 1-cocycle in the sheaf of $\mathcal{L}(\mathcal{E} \Box \mathcal{F})$-valued holomorphic germs on Ω, Corollary 1 implies that there exist, for all $\alpha \in \Lambda$, $g_{\alpha} \in \Gamma(\mathcal{L}(\mathcal{E}_\alpha \Box \mathcal{F}_\alpha))$ such that

$$g_{\alpha}|_{U_{\alpha\beta}} = g_{\beta}|_{U_{\alpha\beta}} = g_{\alpha\beta}. \quad (8)$$

By (5) each g_{α} can be identified with $h_{\alpha} \in \mathcal{M}(\mathcal{E}_\alpha)$, satisfying $h_{\alpha}(\mathcal{E}_\alpha) \subset \mathcal{F}_\alpha$ and $h_{\alpha}(\mathcal{F}_\alpha) = 0$ and, by (8),

$$h_{\alpha}|_{\mathcal{E}_\alpha} - h_{\beta}|_{\mathcal{E}_\alpha} = f_{\alpha}|_{\mathcal{E}_\alpha} - f_{\beta}|_{\mathcal{E}_\alpha}$$

for all $\alpha, \beta \in \Lambda$ whenever $U_{\alpha\beta} \neq \emptyset$. Hence

$$(f_{\alpha} - h_{\alpha})|_{\mathcal{E}_{\alpha\beta}} = (f_{\beta} - h_{\beta})|_{\mathcal{E}_{\alpha\beta}}$$

whenever $U_{\alpha\beta} \neq \emptyset$ and the mapping

$$p(\xi) := f_{\alpha}(\xi) - h_{\alpha}(\xi)$$

for all $\xi \in \pi^{-1}(U_{\alpha})$ is well defined on \mathcal{E} and belongs to $\mathcal{M}(\mathcal{E})$. Since f_{α} and h_{α} both map \mathcal{E}_α into \mathcal{F}_α for all $\alpha \in \Lambda$ it follows that $p(\mathcal{E}) \subset \mathcal{F}$ and as $f_{\alpha}(\mathcal{E}_\alpha) = \mathcal{F}_\alpha$ and $h_{\alpha}(\mathcal{F}_\alpha) = \{0\}$ this implies $p(\mathcal{E}) = \mathcal{F}$. If $z \in U_{\alpha}$ and $\xi \in \mathcal{E}_z$ then $f_{\alpha,z}(h_{\alpha,z}(\xi)) = h_{\alpha,z}(\xi), h_{\alpha,z}(f_{\alpha,z}(\xi)) = 0$, and $h_{\alpha,z}(h_{\alpha,z}(\xi)) = 0$. Hence

$$p(p(\xi)) = p(f_{\alpha,z}(\xi) - h_{\alpha,z}(\xi)) \quad = f_{\alpha,z}(\xi) - f_{\alpha,z}(h_{\alpha,z}(\xi)) + h_{\alpha,z}(h_{\alpha,z}(\xi)) \quad = f_{\alpha,z}(\xi) - h_{\alpha,z}(\xi) \quad = p(\xi).$$

This completes the proof in one direction.

Since the converse is a local result we may suppose that \mathcal{E} is the trivial bundle, $\Omega \times X$, that $p \in \mathcal{H}(\Omega, \mathcal{L}(X))$ and $p(z)$ is a projection for all $z \in \Omega$. We must show that $\mathcal{F} := \{(x, z) : x = p(z)x\}$ is a direct sub-bundle of \mathcal{E}. Fix $w \in \Omega$, and let $X_0 := p(w)X, X_1 := (1_X - p(w))X$. For $z \in \Omega$ let

$$A(z) := p(z)p(w) + (1_X - p(z))(1_X - p(w)).$$

Since $A(w) = 1_X$ we can choose a neighbourhood of w, V_w, such that $A(z)$ is invertible on V_w. Then

$$A(z)(X_0) = p(z)p(w)X \subset p(z)X$$

and

$$A(z)(X_1) = (1_X - p(z))(1_X - p(w))X \quad \subset (1_X - p(z))X.$$

Since $A(z)$ is invertible on V_w we have $A(z)(X_0 + X_1) = X$, hence $A(z)(X_0) = p(z)X$ and $A(z)(X_1) = (1_X - p(z))X$. If $B(z)$ denotes the inverse of $A(z)$ then $X_0 = B(z)(p(z)X)$ for all $z \in V_w$ and the mapping

$$V_w \times X \to V_w \times X : (z, x) \to (z, B(z)x)$$

provides the required trivialization. This completes the proof. ■

Note that we did not require pseudo-convexity or Corollary 1 for the second half of the proof.
4 Generalised Inverses

In this section we consider the following question: if \(f \in \mathcal{H}(\Omega, \mathcal{L}(X, Y)) \) and \(f(z) \) has a generalised inverse at all points in \(\Omega \), does \(f \) have a holomorphic generalised inverse?

Definition 3. Let \(f \in \mathcal{H}(\Omega, \mathcal{L}(X, Y)) \), where \(X \) and \(Y \) are Banach spaces and \(\Omega \) is an open subset of a Banach space. A mapping \(g \in \mathcal{H}(\Omega, \mathcal{L}(X, Y)) \) is called a holomorphic generalised inverse for \(f \) if \(g(z) \) is a generalised inverse for \(f(z) \) for all \(z \in \Omega \).

The following example shows that a holomorphic generalised inverse need not always exist.

Example 3. If \(h(z) = z1_H \), where \(H \) is a one dimensional Hilbert space, then \(h \in \mathcal{H}(\mathbb{C}, \mathcal{L}(H)) \). If \(z \neq 0 \), \(f(z) \) is invertible and we have a unique generalised inverse \(g(z) := (f(z))^{-1} = z^{-1}1_H \). Since \(\lim_{z \to 0} g(z) \) does not exist \(f \) does not have a holomorphic generalised inverse.

Proposition 3. Let \(f \in \mathcal{H}(\Omega, \mathcal{L}(X, Y)) \), where \(X \) and \(Y \) are Banach spaces and \(\Omega \) is an open subset of a Banach space. Then \(f \) has a holomorphic generalised inverse if and only if there exist \(P \in \mathcal{H}(\Omega, \mathcal{L}(X)) \) and \(Q \in \mathcal{H}(\Omega, \mathcal{L}(Y)) \) such that \(P(z) \) is a continuous projection onto \(\ker(f(z)) \) and \(Q(z) \) is a continuous projection onto \(\im(f(z)) \) for all \(z \in \Omega \).

Proof. If \(g \) is a holomorphic generalised inverse for \(f \) then the mappings \(P \) and \(Q \), defined by letting \(P(z) := g(z) \circ f(z) \) and \(Q(z) := f(z) \circ g(z) \), are the required projection-valued holomorphic mappings.

Conversely, suppose we are given the projection-valued holomorphic mappings \(P \) and \(Q \). For convenience let \(P^*(z) = 1_X - P(z) \) and let \(I_z \) denote the natural injection from \(P^*(z)X \) into \(X \) for all \(z \in \Omega \). Let

\[
g(z) := I_z \circ (f^*(z))^{-1} \circ Q(z)
\]

where \(f^*(z) = f(z)|_{P^*(z)X} \). The linear result in the second section shows that \(g(z) \) is a generalised inverse for \(f(z) \) for all \(z \in \Omega \).

To show that \(g \) is holomorphic we fix \(w \in \Omega \) and choose \(\epsilon > 0 \) such that \(W := \{ z : ||z - w|| < \epsilon \} \subset \Omega, ||P(z) - P(w)|| < 1 \) and \(||Q(z) - Q(w)|| < 1 \) for all \(z \in W \). Let \(U(z) = 1_X + P(z) - P(w) = 1_X - P^*(z) + P^*(w) \) and \(V(z) = 1_Y - Q(z) + Q(w) = 1_Y + Q^*(z) - Q^*(w) \) for all \(z \in W \). By Lemma 1, \(U \in \mathcal{H}(W, GL(X)), V \in \mathcal{H}(W, GL(Y)) \), \(U(z)(P^*(z)X) = P^*(w)X \) and \(V(z)(Q(z)Y) = Q(w)Y \) for all \(z \in W \). We have

\[
g(z) := (I_w \circ U(z)^{-1}) \circ (U(z) \circ (f^*(z))^{-1} \circ V(z) \circ Q(z))
\]

\[
= (I_w \circ U(z)^{-1}) \circ (V(z) \circ f(z) \circ U(z)^{-1}) \circ (V(z) \circ Q(z)).
\]

Since \(V(z) \circ Q(z) = Q(w) \circ Q(z) \) for all \(z \in W \) the mapping \(z \mapsto V(z) \circ Q(z) \) lies in \(\mathcal{H}(W, \mathcal{L}(Q(w)Y, Q(w)Y)) \). By Lemma 1, the mapping \(z \in W \mapsto I_w \circ U(z)^{-1} \) belongs to \(\mathcal{H}(W, \mathcal{L}(P^*(w)X, X)) \). It remains to show that the mapping

\[
z \mapsto k(z) := (V(z) \circ f(z) \circ U(z)^{-1})^{-1}
\]

lies in \(\mathcal{H}(W, \mathcal{L}(Q(w)Y, P^*(w)X)) \). By construction the mapping

\[
z \mapsto k^*(z) := V(z) \circ f(z) \circ U(z)^{-1}
\]

lies in \(\mathcal{H}(\Omega, GL(P^*(w)X, Q(w)Y)) \) and, as \(k(z) = (k^*(z))^{-1} \), this proves that \(k \) is holomorphic. This completes the proof.

We now present the main result in this article. Note that for \(z \in \Omega \), \(\ker(f(z)) \) is the kernel of a linear operator while \(\ker(f) \) is a holomorphic vector bundle.

Theorem 2. Let \(\Omega \) be a pseudo-convex open subset of a Banach space with an unconditional basis and let \(X \) and \(Y \) be Banach spaces. If \(f \in \mathcal{H}(\Omega, \mathcal{L}(X, Y)) \) has a generalised inverse for each \(z \in \Omega \), then the following conditions are equivalent:

(1) \(f \) has a holomorphic generalised inverse on \(\Omega \).

(2) There exist holomorphic projections \(P \in \mathcal{H}(\Omega, \mathcal{L}(X)) \cong \mathcal{M}(\Omega \times X) \) onto \(\ker(f) := \{ (z, x) : z \in \Omega, x \in X, f(z)x = 0 \} \) and \(Q \in \mathcal{H}(\Omega, \mathcal{L}(Y)) \cong \mathcal{M}(\Omega \times Y) \) onto \(\text{im}(f) := \{ (z, y) : z \in \Omega, y \in Y, y = f(z)x \text{ for some } x \in X \} \).

(3) \(\ker(f) \) and \(\text{im}(f) \) are direct sub-bundles of the trivial bundles \(\Omega \times X \) and \(\Omega \times Y \) respectively.

(4) For every \(w \in \Omega \) there exists a neighbourhood \(V_w \) of \(w \) and closed subspaces \(X_w \subset X \) and \(Y_w \subset Y \) such that for all \(z \in V_w \), \(\ker(f(z)) \oplus X_w = X \) and \(\text{im}(f(z)) \oplus Y_w = Y \).

\textbf{Proof.} By Proposition 3, (1) and (2) are equivalent. By Proposition 2, (2) and (3) are equivalent. By the definition of sub-bundle, (3) implies (4), and it remains to show that (4) implies (3).

Since the result is local we fix \(w \in \Omega \) and show that (3) holds on a neighbourhood \(V_w \) of \(w \). If \(z \in V_w \), \(x \in X \) and \(y \in Y_w \) let \(g(z)(x + y) = f(z)x + y \). Then \(g \in \mathcal{H}(V_w, \mathcal{L}(X + Y_w, Y)) \).

\[
\ker(g(z)) = \ker(f(z)) + \{0\} \quad \text{and} \quad \text{im}(g(z)) = \text{im}(f(z)) + Y_w = Y
\]

for all \(z \in V_w \). Hence \(g \) is surjective with complemented kernel for all \(z \in V_w \). By the proof of Proposition 1 (see also Theorem 4 in [4]), \(\ker(g) = \{ (z, x, y) \in V_w \times (X + Y_w) : f(z)x = 0, y = 0 \} \) is a direct holomorphic sub-bundle of the trivial bundle \(V_w \times (X + Y_w) \). Since \(\ker(f|_{V_w}) \cong \ker(g) \subset V_w \times (X + \{0\}) \cong V_w \times X \) this implies \(\ker(f|_{V_w}) \) is a direct sub-bundle of the trivial bundle \(V_w \times X \).

By Proposition 2 there exists a holomorphic projection \(p \in \mathcal{H}(V_w, \mathcal{L}(X)) \) such that \(\ker(f(z)) = p(z)(X) \) for all \(z \in V_w \). By Lemma 1 and, if necessary, by restricting ourselves to a smaller neighbourhood of \(w \) we have \(p(z)(X) = p(w)(X) =: Z_w \) for all \(z \in V_w \). Hence \(X = Z_w \oplus X_w \) and \(f(z)(x + y) = f(z)(y) \) for all \(z \in V_w \), all \(x \in Z_w = \ker(f(z)) \), and all \(y \in X_w \). If \(h(z) := f(z)|_{X_w} \) then \(h \in \mathcal{H}(V_w, \mathcal{L}(X_w, Y)) \).

\(h(z) \) is injective and \(\text{im}(f(z)) = \text{im}(h(z)) \) is a complemented subspace of \(Y \) for all \(z \in V_w \). By adapting the proof of Proposition 1 in [4] we see that \(\text{im}(h) = \text{im}(f|_{V_w}) \) is a complemented sub-bundle of the trivial bundle \(V_w \times Y \). Hence (4) implies (3) and this completes the proof. \(\blacksquare \)

\textbf{Acknowledgement.} This work was carried out with the partial support of SFI grant R9317.

\textbf{References}

Holomorphically Dependent Generalised Inverses

Seán Dineen
School of Mathematical Sciences, University College Dublin, Dublin 4, Ireland.

Milena Venkova
School of Mathematical Sciences, University College Dublin, Dublin 4, Ireland.