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Abstract. Pascal’s classic theorem states that: “the three intersection points of opposite sides of a
closed hexagonal line, inscribed in a nondegerated conic, are collinear”. The following extension of
Pascal theorem to 3D is considered: “given a closed decagonal line, inscribed in a nondegerated quadric,
whose opposite side-lines are secant, the five intersectionpoints of opposite side-lines are coplanary”.
(A polygonal line with10 sides is considered, because10 − 1 points determine a quadric, as6 − 1

points determine a conic). Obviously, in this extension to 3D of Pascal theorem some vertices of the
polygonal line can not be freely chosen, but an interesting property has been found: the five diagonal
lines passing through opposite vertices share a point. Thisproperty leads to a simple method to generate
the configuration. Moreover, conditions of existence of this configuration are determined and the so called
complete configuration is also described in detail. As largeexpressions appear when coordinates are used,
we have developed a package on a computer algebra system thathelps us to find and to automatically
generate this configuration.

Obtenci ón de una extensi ón a 3D del teorema de Pascal para cu ádricas no
degeneradas y su configuraci ón completa con la ayuda de un sistema de

cómputo algebraico

Resumen. El teorema clásico de Pascal afirma: “los tres puntos de intersección de lados opuestos de
una lı́nea hexagonal cerrada, inscrita en una cónica no degenerada, son colineales”. Se considera la si-
guiente extensión a 3D del teorema de Pascal: “dada una lı́nea decagonal cerrada, inscrita en una cuádrica
no degenerada, cuyos lados opuestos sean secantes, los cinco puntos de intersección de lados opuestos
son coplanarios”. (Se considera una lı́nea poligonal de10 lados, porque10 − 1 puntos determinan una
cuádrica, del mismo modo que6−1 puntos determinan una cónica). Obviamente, en esta extensión a 3D
del teorema de Pascal algunos vértices de la lı́nea poligonal no pueden ser libremente elegidos, pero se
ha encontrado una propiedad interesante: las cinco lı́neasdiagonales que pasan por vértices opuestos de
la poligonal son concurrentes en un punto. Esta propiedad conduce a un método sencillo para generar la
configuración. Aun más, se determinan las condiciones de existencia de la configuración y se describe en
detalle su configuración completa. Como al introducir coordenadas aparecen expresiones extensas, se ha
desarrollado un paquete sobre un sistema de cómputo algebraico, que ayuda a determinar la configuración
y a generarla automáticamente.
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”Mathematics is not a deductive science. When
you try to [solve a problem]. . .. what you do
is trial and error, experimentation, guesswork.

You want to find out what the facts are, and
what you do is in that respect similar to what a

laboratory technician does, but it is different
in its degree of precision and information.”

Paul Halmos

1 Introduction

We have been working for some time in the extension of classicgeometric theorems to 3D using computa-
tional methods [7, 8, 9, 10, 11, 12, 13, 14].

In Section 4 of [13] and, more deeply, in [14], we had been able to extend Pappus 2D theorem classic
configuration to 3D. As this configuration can be considered as a particular case of that of Pascal 2D theorem
(when the conic degenerates into two lines), it is natural toconsider as the next step the 3D extension of
Pascal 2D theorem classic configuration. Such is the goal of the present work.

1.1 Pascal 2D classic theorem

Pascal 2D theorem classic configuration can be found in any standard geometry textbook. Let us begin
revisiting it, trying to extract ideas about how to extend this theorem to 3D.

Given a conicc (for instance, an ellipse) and a sequence of six points lyingon c: A1, A2, A3, A4,
A5, A6, (all different two by two), the closed polygonal which vertices are those points is considered.
Now, denoting the sides of the polygonal the following way:L1 = A1A2, L2 = A2A3, L3 = A3A4,
L4 = A4A5, L5 = A5A6, L6 = A6A1, if each side intersects it opposite one, then those three intersection
points,P1 = L1 ∩ L4, P2 = L2 ∩ L5, P3 = L3 ∩ L6, are collinear (see Figure1). This result is known as
Pascal (classic) theorem.

Figure 1. Pascal 2D classic configuration.

As the opposite sides (segments) could not intersect (i.e.,could be disjoint), it is advisable to substitute
the “sides” of the polygonal by “side-lines”. In case two opposite side-lines are parallel, that they intersect
at their point at infinity can be considered, and therefore itis advisable to consider this configuration in
the projective plane. In this space, the result can be enunciated as follows:the opposite side-lines of a
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hexagonal closed polygonal inscribed in a conic intersect at collinear points(see Figure2). The line,p,
passing through those three points, is denotedPascal line.

Figure 2. Configuration with intersecting side-lines.

1.2 Determining Pascal 2D configuration

Summarizing, Pascal classic configuration involves the following elements: the conicc ; the six vertices of
the closed inscribed polygonal,A1, A2, A3, A4, A5, A6; the six side-lines of the polygonal,L1, L2, L3, L4,
L5, L6; the three intersection points of opposite side-lines,P1, P2, P3; and Pascal linep, passing through
the latter points.

The anomalous cases when two vertices are coincident or whenthe Pascal line passes through a vertex,
are excluded. Therefore, the six vertices of the polygonal will be supposed to be different two by two and
the Pascal line will be supposed not to pass through any vertex of the polygonal.

As a conic is determined by five points in the plane, Pascal classic configuration is determined by five
vertices of the polygonal and by a sixth vertex on the conic passing through the other five points.

The following proposition details another way to determinethe configuration, that will be useful to
extend the problem to 3D.

Proposition 1 Pascal classic configuration is also determined by conicc, the four first verticesA1, A2,
A3, A4 of the polygonal line and Pascal linep.

PROOF. With the notation used above, from the given elements we cansuccessively determine:L1 =
A1A2, L2 = A2A3, L3 = A3A4, P1 = L1 ∩ p, L4 = A4P1, A5 = L4 ∩ c (A5 6= A4), P2 = L2 ∩ p,
L5 = A5P2, A6 = L5 ∩ c (A6 6= A5), L6 = A6A1, P3 = L3 ∩ p, where only thatP3 lies onL6 is left, but
this membership relation holds as a consequence of Pascal theorem. �

Remark 1 Obviously, in the previous Proposition1 the four first vertices can be substituted by the three
first sidesL1, L2, L3.

1.3 The state of Pascal theorem extension to 3D

The classic theorem due to Pascal (1623–1662) has already been extended in different ways.
Its extension to plane curves of degree greater than2 was initiated by Clifford [3] and later developed

by C. Fox [6] in different ways: 1) substituting the conic by a plane cubic and the hexagon by an octogon;
2) substituting the conic by a plane quartic and the hexagon by an decagon; 3) proving that it is not possible
to extend the result to algebraic curves of degree greater than4.
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Another way to extend Pascal classic 2D theorem appears in page 143 of section 144b of George Salmon
treatise [15]. The 3D extension consists on substituting conic by ruled quadric and the six sides of the
hexagon by two sets of three planes. If each of the planes of these sets intersects two of the planes in the
other set in lines contained in the quadric, then the intersections of those planes with the third planes in the
other set are coplanary lines. An analogous result, following a simpler and more intuitive way, has recently
been obtained by one of the coauthors of this article [5]. It is the most modern result we know regarding the
3D extension of Pascal theorem, but it does not treat polygons inscribed in a quadric, but polygons whose
side-lines are generatrices of the quadric (that is consequently a ruled quadric).

Another extension of Pascal 2D theorem was enunciated (without proof) by M. Chasles [2], proven by
G. Salmon in section 144b (pages 141–142) of its treatise [15] and rediscovered by N. A. Court [4]. It can
be enunciated this way: given a tetrahedron of verticesVi; i = 1, 2, 3, 4 and four planes,αi; i = 1, 2, 3 ,4,
for each planeαi, the three intersection points with the three side-lines ofthe tetrahedron passing through
vertexVi (that is, the three pointsAij = αi ∩ViVj ; j 6= i) and lineρi, intersection ofαi with the face-plane
of the tetrahedron opposite to vertexVi, are considered. Then, the twelve pointsAij lie on a certain quadric
if the four linesρi are coplanary. This 3D result was later extend to dimensionn by O. Bottema [1].

The work below treats the 3D extension of Pascal theorem to any non-degenerated quadric (needless to
be ruled).

The case when the quadrics degenerate into a pair of planes (then Pascal 3D theorem turns into Pappus
3D theorem) has already been studied by this authors [14].

For our approach to Pascal 3D configuration, the converse of Pascal 2D theorem is of special interest.
It can be enunciated the following way: given a conic,c, and a coplanar line,p, it is always possible to
inscribe an hexagon inc whose Pascal line isp. The proof of this result can be found in the article by
C. Fox mentioned above [6] and will be used constructively in this article.

Summarizing, as far as we know, the 3D extension of Pascal 2D theorem treated in this article has
nothing to do with those extensions previously developed.

2 Our 3D extension of Pascal configuration

When trying to extend to 3D Pascal classic configuration, it seems natural to substitute “conic” by “quadric”.
It also seems natural to substitute the six sides closed polygonal by a ten sides one, as10−1 points determine
a quadric (the same way as6 − 1 points determine a conic).

On the other hand, in the projective plane two different lines always share a common point, meanwhile
in the 3D projective space two different line can be disjoint(i.e., without common points). Consequently,
when trying to extend to 3D Pascal classic configuration, that each pair of opposite sides of the ten sides
polygonal share a common point has to be firstly required.

Finally, it seems natural to consider as thesis that these five intersection points of opposite sides of the
polygonal are coplanary (the same way as the three intersection points of opposite sides of the polygonal
are collinear in the 2D case).

These considerations lead to the following definition.

Definition 1 In the real projective 3D space, a non-degenerated quadric,S, and a ten vertices (A1, A2,
. . ., A10) closed polygonal, which side lines are denotedL1 = A1A2, L2 = A2A3, L3 = A3A4, . . .,
L9 = A9A10, L10 = A10A11 are considered (as the polygonal is closed,A11 = A1, what shortens
notation). If all the following conditions are verified:

1) the polygonal is inscribed in the quadric, that is, its vertices verifyAi ∈ S; i = 1, . . ., 10,

2) all vertices are different two by two, that is,Ai 6= Aj ; for i 6= j,

3) each side-line and its opposite one,Li andLi+5, do intersect, fori = 1, . . ., 5,

4) each plane containing a side-line and its opposite,Li andLi+5, is different from the plane containing
the following side-line and its opposite,Li+1 andLi+6; i = 1, . . ., 5, (whereL11 is L1),
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5) the five intersection points of opposite side-lines, denotedP1 = L1∩L6, P2 = L2∩L7, P3 = L3∩L8,
P4 = L4 ∩ L9, P5 = L5 ∩ L10, are coplanary,

then we shall say that these geometric elements constitute aPascal 3D configuration. The plane through
the five pointsP1, P2, P3, P4, P5 will be named “Pascal plane of the configuration” and will be denotedπ
(see Figure3).

Figure 3. Pascal 3D configuration.

Now two questions arise: do such configurations exist?; and,in case the answer to the previous question
is affirmative: how to construct them?

We shall begin by showing two very simple example, that will later bring ideas about how to construct
Pascal 3D configurations.

2.1 Configuration obtained from a pentagonal prism inscribe d in a sphere

Given a pentagonal prism inscribed in a spherical surface, the closed polygonal, which sides are the diago-
nals of the faces of the prism, is considered (Figure4).

More precisely, given the spherical surface,S, with equationx2
1 + x2

2 + x2
3 − 3x2

0 = 0, the closed
polygonal line which vertices areA1 = (1, 1,−1, 1), A2 = (1, 1, 1,−1), A3 = (1,−1, 1, 1), A4 =
(1, 0,−

√

(2),−1), A5 = (1,−1,−1, 1), A6 = (1, 1,−1,−1), A7 = (1, 1, 1, 1), A8 = (1,−1, 1,−1),
A9 = (1, 0,−

√

(2), 1), A10 = (1,−1,−1,−1), different two by two and lying onS, is considered.
Its ten side-lines also satisfy conditions3) and4) of Definition 1. The intersection points of opposite

side-lines turn out to be:P1 = (1, 1, 0, 0), P2 = (1, 0, 1, 0), P3 = (−2, 1,−1+
√

(2), 0), P4 = (−2, 1, 1+
√

(2), 0), P5 = (−1, 0, 1, 0).
The Pascal plane,π, passing throughP1, P2, P3, P4 andP5 turns out to bex3 = 0 (as shown in

Figure4). Therefore this is a Pascal 3D configuration in the sense of Definition1.

97



E. Roanes-Macı́as, E. Roanes-Lozano and J. Fernández-Biarge

Figure 4. Configuration obtained from a pentagonal prism

2.2 Pascal 3D configuration with centre of symmetry

Given a polyhedron consisting of a cube with two opposite side faces pointed, inscribed in a spherical
surface,S, the decagon of Figure5, which sides are edges of this polyhedron and that admits as centre of
symmetry the centre,O of the cube, is considered.

More precisely, given the spherical surface,S, with equation(x1−1)2 +(x2−1)2 +(x3−1)2−3x2
0 =

0, the closed polygonal line which vertices areA1 = (1, 2, 0, 0), A2 = (1, 2, 2, 0), A3 = (1, 2, 0, 2),
A4 = (1, 1, 1, 1 +

√

(3)), A5 = (1, 2, 2, 2), A6 = (1, 0, 2, 2), A7 = (1, 0, 0, 2), A8 = (1, 0, 2, 0),
A9 = (1, 1, 1, 1−

√

(3)), A10 = (1, 0, 0, 0), different two by two and lying onS, is considered.
Its ten side-lines also satisfy conditions3) and 4) of Definition 1. The intersection points of op-

posite side-lines turn out to be:P1 = (0, 0, 1, 0), P2 = (0, 0,−1, 1), P3 = (0,−1, 1,−1 +
√

(3)),
P4 = (0, 1, 1, 1−

√
3), P5 = (0, 1, 0, 0).

Let us observe that, as the polygonal admits a centre of symmetry, each side-line is parallel to its
opposite one, and therefore they do intersect at their pointat infinity. Consequently, the five intersection
points of opposite side-lines lie on the plane at infinity,x0 = 0. Therefore, this is a Pascal 3D configuration
in the sense of Definition1, andx0 = 0 is its Pascal plane.

3 Package for calculations automation

Extraordinary long expressions arise when trying to analytically calculate the coordinates and equations of
the elements of the configuration in not so simple cases. Thisfact makes it advisory to use a computational
system enabling non-assigned variable handling and exact arithmetic.

We have used theparamGeo3Dpackage, implemented in the computer algebra systemMaple, that
we had developed and implemented for the work described in [13]. It has been complemented with other
commands and procedures that are useful for the computations that appear in the present work. We detail
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Figure 5. Configuration with centre of symmetry.

below those most frequently used.

• point(A) returns the list [a0,a1,a2,a3], which elements are the projective coordinates of the point
A = (a0, a1, a2, a3).

• plane(A,B,C) returns the equation of the plane through the three pointsA, B, C, that are sup-
posed to be non collinear (it returns an error message in casethey are collinear).

• line(A,B) returns the list of equations of two planes through pointsA andB, that are supposed to
be different (it returns an error message if the points are coincident).

• pointOnLine(A,B,r) , returns the pointP on the line through pointsA andB, such that
−→
AP =

r · −−→AB, wherer is a real number or∞.

• sphere returns the equation of the corresponding spherical surface, when applied (indistinctly) to
its center and a point on it, or to its center and the radius, oralso to four non-coplanary points.

• quadric returns the equation of the corresponding quadric, when applied to nine points that define
it.

• intersection when applied to two previously defined algebraic varieties,which sum of degrees
is≤ 3, returns their intersection points.

• vertex(A,S) returns the list [a0, a1, a2, a3] of projective coordinates of pointA = (a0, a1, a2, a3)
and adds list [a0, a1, a2, a3] to the listV ERTICES, in caseA is on quadricS and it is not yet in
such list (it returns an error message in other case).

• newVertex(r,S) returns the intersection point of liner with quadricS, not contained in list
V ERTICES, and adds this point to such list.
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• isIn(A,Ob) returnstrue/false, depending on whether pointA is on objectOb (line, plane or
quadric) or not.

• isPlaced(A,Ob) returns the result of substituting the coordinates of pointA in the equation or
equations of objectOb (line, plane or quadric).

• equalPoints(A,B) returnstrue/false, depending on whetherA andB are projective coordinates
of the same point or of different points.

• equalVertices(L) returns the positions of the pairs of equal points in the listof verticesL.

• coplanarPoints(A,B,C,D) returnstrue/false, depending on whether the four pointsA, B, C,
D are coplanary or not.

• polarPlane(A,S) returns the equation of the polar plane of pointA with respect to quadricS,
that is, the equation

[

∂(f)

∂(x0)

]

A

x0 +

[

∂(f)

∂(x1)

]

A

x1 +

[

∂(f)

∂(x2)

]

A

x2 +

[

∂(f)

∂(x3)

]

A

x3 = 0

wheref(x0, x1, x2, x3) = 0 is the equation of quadricS.

Remark 2 Two points,A andB, are said to be conjugated respect quadricS if they are harmonically
separated by the intersection points of lineAB andS. The locus of the conjugated points ofA with respect
to S is a plane, named polar plane ofA with respect toS.

4 Experimenting to generate Pascal 3D configuration

Let us begin by testing a parametric method to generate Pascal 3D configuration, inspired by the method of
the proof of Proposition1.

The quadric, the five first side-lines of the polygonal and thecommon point to the first side-line and its
opposite, are considered as initial objects.

Given the quadric, the first five side-lines of the polygonal line are determined by its six first vertices
(different two by two and laying on the quadric).

The common point,P1, to the first side-lineA1A2 and its opposite one can be left undetermined,
defining it using a parameter,λ1, the following way:P1 = A1 + λ1 · (A2 −A1), whereλ1 6= 0, 1, in order
P1 to be be different fromA1 andA2.

As P1 is the common point toL1 andL6, the side-lineL6 is the lineA6P1, beingA7 the other intersec-
tion point ofL6 andS, apart fromA6.

The other vertices can be obtained iterating the process just described to determineA7, as detailed in
the Section4.1.

On the other hand, it is immediate to check that condition4) of Definition 1 can be substituted by an
equivalent one, but easier to check: that the four verticesAi, Ai+1, Ai+5, Ai+2 are not coplanary fori = 1,
2, . . ., 5.

Finally, it is also immediate to check that, if the Pascal plane does not pass through any vertex, then
the following property holds: ifL1, L2, L3 are not coplanary, thenP1, P2, P3 are not collinear, and,
consequently, these three points determine planeπ.

4.1 Parametric generation method

The process to construct Pascal 2D configuration described in Proposition1, suggests a way to generate
Pascal 3D configuration that is detailed in the following Algorithm1 (where the command of Section3 that
can be used to execute each step is detailed).
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Algorithm 1 Input: quadricS; verticesAi, i = 1, . . ., 6 (with commandvertex )
Output: verticesA7, . . ., A10; Pascal planeπ; pointsP1, . . ., P5

Steps:
1. Li := AiAi+1; i = 1, . . ., 5 (with commandline )
2. P1 := A1 + λ1 · (A2 − A1)
3. L6 := A6P1 (with commandline )
4. A7 := L6 ∩ S, such thatA7 6= A6 (with commandnewVertex )
5. P2 := A2 + λ2 · (A3 − A2)
6. L7 := A7P2 (with commandline )
7. A8 := L7 ∩ S, such thatA8 6= A7 (with commandnewVertex )
8. P3 := A3 + λ3 · (A4 − A3)
9. L8 := A8P3 (with commandline )

10.A9 := L8 ∩ S, such thatA9 6= A8 (with commandnewVertex )
11.π:= planeP1, P2, P3 (with commandplane )
12.P4 := L4 ∩ π (with commandintersection )
13.L9 := A9P4 (with commandline )
14.A10 := L9 ∩ S, such thatA10 6= A9 (with commandnewVertex )
15.L10 := A10A1 (with commandline )
16.P5 := L5 ∩ π (with commandintersection )
17. substitute the coordinates ofP5 in the equations ofL10 (with commandisPlaced )
18. solve the system of step 17 w.r.t.λ2, λ3 (with Maplesolve command)
19. from among the solutions of step 18,{λ2(λ1), λ3(λ1)}, choose those that verify the three conditions:

19.1 the vertices are different two by two (with commandequalVertices )
19.2Ai, Ai+1, Ai+5, Ai+2 are not coplanary, fori = 1, 2, . . ., 5 (with commandcoplanarPoints )
19.3 the planeπ does not pass through vertices of the polygonal (with command isIn ).

Remark 3 In steps12 and 16 that P4 ∈ π and P5 ∈ π was required. It would seem more natural to
defineP5 = L5 ∩ L10 and to check later thatP5 ∈ π. But this would require to make sure thatL5 and
L10 intersected, what is not possible, as it depends on the values of the parameters. That is why to define
P5 = L5 ∩ π and to impose later thatP5 ∈ L10 has been chosen (what is equivalent).

Example of execution of Algorithm 1 In order to simplify the calculation, a quadric and vertices,
such that the coordinates of the latter have simple expressions, have been chosen. They are ellipsoidS, of
equation3x2

1 +2x2
2 +x2

3−36x2
0 = 0, and the closed polygonal which first six vertices areA1 = (1, 0, 0, 6),

A2 = (1, 0, 0,−6), A3 = (1, 1, 2, 5), A4 = (1, 2,−2,−4), A5 = (1, 3, 0, 3), A6 = (1,−2,−2,−4).
When executing Algorithm1 with this input data, three solutions are obtained at Step 18.

1st Solution:
{

λ2 = 0, λ3 = 22
47

}

As λ2 = 0, obviouslyP2 = A2 and therefore planeπ passes through vertexA2. Moreover, substituting
these values of the parameters, thatA8 = A2 andA10 = A1 (for any valueλ1) is obtained, so the polygonal
has two coincident vertices, and therefore this solution does not provide a Pascal 3D configuration in the
sense of Definition1. Moreover, planeπ also passes through verticesA1, A8, A9 andA10 = A1. (This
will be interpreted below).

2nd Solution:
{

λ2 = λ2, λ3 = 3λ1λ2−λ1−λ2+1
3λ1λ2+6−4λ2−6λ1

}

Substituting these values of the parameters, thatA5 andA10 coincide is obtained, and alsoP5 = A5 (for
any values ofλ1 andλ2), so the polygonal has two coincident vertices, and therefore this solution does not
provide a Pascal 3D configuration in the sense of Definition1. Thatπ passes through these two coincident
vertices will be interpreted below.

3rd Solution:
{

λ2 = −60(λ1−1)
14λ1+55 , λ3 = 74λ1−5

5(2λ1+9)

}

Substituting these values of the parameters, the conditions of Steps 19.1, 19.2 and 19.3 of Algorithm1 are

101



E. Roanes-Macı́as, E. Roanes-Lozano and J. Fernández-Biarge

verified, and therefore this solution does provide a Pascal 3D configuration in the sense of Definition1. The
long expressions obtained for the coordinates of the four last points are omitted for the sake of brevity,, as
well as those of the five pointsP1, P2, . . ., P5 (all depending on parameterλ1).
Summarizing, only the3rd solution provides a Pascal 3D configuration in the sense of Definition 1. More
precisely, in such case, a sheaf of Pascal 3D configurations depending on parameterλ1 is obtained.

4.2 Conjectures regarding Pascal 3D configurations

In the previous example a one dimensional family of Pascal configurations depending on parameterλ1 has
been obtained. Consequently, for any possible value ofλ1 (0 6= λ1 6= 1), that is, for any possible position
of P1 on the side-lineL1 (A1 6= P1 6= A2), a Pascal configuration is obtained. The result obtained induces
to formulate the following conjecture.

Conjecture 1 Given a quadricS, the first five side-linesL1, L2, L3, L4, L5 of a polygonal (or, what is
equivalent, its first six verticesA1, A2, A3, A4, A5, A6 ∈ S) and a pointP1 on L1, such thatP1 6∈ S, a
Pascal 3D configuration with these initial elements does exist.

On the other hand, in the example of Section2.1 the five diagonal-lines passing through each pair of
opposite vertices of the polygonal do all share the point at infinity (0, 0, 0, 1). Moreover, the polar plane of
this point with respect to sphereS is the Pascal planex3 = 0.

In the example of Section2.2, the five diagonal-lines passing through each pair of opposite vertices of
the polygonal do all pass through the centre of the sphere,O. Moreover, the polar plane ofO with respect
to sphereS is the Pascal planex0 = 0.

That leads to wonder if these properties also hold in the Pascal 3D configuration of the3rd example
of the preceding section. In effect, in such case, the commonpoint, V , of the side-lines passing through
opposite verticesA1A6 andA2A7 (that can be obtained using commandintersection ), turns out to
be [−10λ1 + 5, 12λ1, 12λ1, 30]. This pointV lies on all the other side-lines passing through two opposite
side-lines:A3A8, A4A9 andA5A10 (what can be checked with commandisIn ). Finally, the polar plane
of V with respect to the ellipsoidS (obtained with commandpolarPlane of our package) turns out to
be(60λ1 − 30)x0 + 6λ1x1 + 4λ1x2 + 5x3 = 0, that is the same Pascal planeπ obtained in the example of
Section4.1for the3rd solution.

The same result has been reached in other examples, that havebeen omitted for the sake of brevity. It
leads to formulate the following conjecture.

Conjecture 2 Given a Pascal configuration on a quadricS, the five lines passing through each two op-
posite vertices polygonal do all share a point, which polar plane with respect toS is its Pascal plane.

In order to prove these conjectures, a projective referencesystem that allowed to chooseA1, A2, . . ., A5

as the points of coordinates(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 1, 1) could be adopted, and
a 4-dimensional family of quadrics passing through those five points cold be considered, but calculations
are extraordinarily complicated.

In the following section these conjectures are treated in a synthetic way, that has been reached applying
the parametric generation method to concrete cases.

5 Pascal 3D complete configuration

Definition 2 Given a closed polygonal line with10 vertices,A1, A2, . . ., A10 (different two by two), the
five lines passing through opposite vertices of the polygonal will be namedmain diagonalsof the polygonal,
and will be denotedR1 = A1A6, R2 = A2A7, R3 = A3A8, R4 = A4A9, R5 = A5A10

Now, Conjecture2 of Section4 can be enunciated as follows:in a Pascal 3D configuration, all the
main diagonals share a point, which polar plane with respectto the quadric is the Pascal plane of the
configuration. To prove it we shall use the following well-known lemma.
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Lemma 1 Let A, B, C, D be four points on a non-degenerated conic,σ. Then the intersection points
V = AB ∩ CD andP = AD ∩ BC are harmonically separated by the intersection points ofσ and line
V P (that is,V andP are conjugated with respect conicσ –see Figure6).

Figure 6. V and P are conjugated points with respect to σ.

We shall begin by proving the following result, that is somehow the reciprocal of Conjecture2.

Theorem 1 LetL be a closed polygonal with10 vertices (different two by two) and side-lines different two
by two, inscribed in a non-degenerated quadric,S. If the five main diagonals ofL share a point,V , then
each side-line ofL intersects its opposite one, and the five intersection points of opposite side-lines,P1, . . .,
P5, lie on a same plane. Such plane is the polar plane of pointV with respect to quadricS (Figure7).

Figure 7. Concurrency of the main diagonals.
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PROOF. According to the notation of Definition2, asR1 andR2 do intersect, the four verticesA1, A6,
A2, A7 are coplanary, and, consequently, the side-linesL1 andL6 are coplanary. Therefore, asL1 andL6

are different form each other (by hypothesis), they share exactly one point,P1. On the other hand, asL
is a polygonal inscribed inS, verticesA1, A6, A2, A7 lie on S, and therefore they also lie on the conic
σ (intersection ofS with the plane through those for points). Moreover, asP1 is the intersection point of
L1 = A1A2 andL6 = A6A7 andV is the intersection point of ofR1 = A1A6 andR2 = A2A7, according
to Lemma1, P1 andV are conjugated with respect to conicσ, and, consequently, they are also conjugated
with respect to quadricS.

That the other pair of opposite side-lines of the polygonalL intersect, and that their respective intersec-
tion points,P2, P3, P4, P5, are conjugated of pointV with respect to quadricS, can be proven the same
way.

Consequently, pointsP1, P2, P3, P4, P5 lie on the polar plane of pointV with respect to quadricS (that
is, the locus of the conjugated points ofV with respect toS). �

Corollary 1 Let L be a closed polygonal with10 vertices (different two by two) and side-lines different
two by two, inscribed in a non-degenerated quadric,S. If the five main diagonals ofL share a point,V ,
then polygonalL determines a Pascal 3D configuration onS.

PROOF. As pointsP1, P2, P3, P4, P5 are coplanary, it is a Pascal 3D configuration in the sense of Defini-
tion 1. �

The following result solves Conjecture1.

Theorem 2 Given a quadric,S, the five first side-lines,L1, . . ., L5, of a polygonal inscribed inS (that
is, which vertices lie onS) and a pointP1 ∈ L1, P1 6∈ S, such that Condition4 of Definition1 is verified,
then a Pascal 3D configuration with those initial elements does exist. Moreover, its five main diagonals
are concurrent at a point,V , which polar plane with respect toS is the Pascal plane of the configuration
(that is, the plane containing pointsP1, . . ., P5, intersection of opposite sides of the polygonal). Such
configuration is unique for those initial points.

PROOF. Let us suppose that quadricS, the six first vertices of the inscribed polygonal,A1, . . ., A6 (or,
what is equivalent, its first five side-linesL1, . . ., L5) and a point,P1 ∈ L1, P1 6∈ S, are fixed. From
these elements, the following elements are successively determined (Figure7): sideL6 = A6P1; vertex
A7 = L6 ∩ S (their other intersection point, apart fromA6); the main diagonalR1 = A1A6; the main
diagonalR2 = A2A7; point V = R1 ∩ R2 and the polar plane,π, of V with respect toS. Now the
following elements are also determined: linesR3 = A3V , R4 = A4V , R5 = A5V ; pointsA8 = R3 ∩ S

(A8 6= A3), A9 = R4∩S (A9 6= A4), A10 = R5∩S (A10 6= A5). According to Theorem1 and Corollary1,
the polygonal of verticesA1, . . ., A10 constructed this way determines a Pascal 3D configuration, which
Pascal plane isπ.

We still have to prove that the Pascal 3D configuration is unique for the already mentioned initial
elements. In effect, once Pascal plane,π, has been determined, the following elements are successively
determined (Figure7): sideL6 = A6P1; vertexA7 = L6 ∩ S (A7 6= A6); pointP2 = L2 ∩ π; the side-line
L7 = A7P2; vertexA8 = L7 ∩ S (A8 6= A7); point P3 = L3 ∩ π; the side-lineL8 = A8P3; vertex
A9 = L8 ∩ S (A9 6= A8); pointP4 = L4 ∩ π; the side-lineL9 = A9P4; vertexA10 = L9 ∩S (A10 6= A9).
And, on the other hand, for the already mentioned initial elements, the Pascal plane can not be different from
planeπ, determined previously. In effect, if the Pascal plane wasπ′ 6= π, then the pole ofπ′ with respect
to quadricS would be a pointV ′ 6= V . Consequently, for the corresponding main diagonalsR′

1 = V ′A1

andR′

2 = V ′A2, at least one of the following inequalities would be verified: R′

1 6= R1 or R′

2 6= R2, what
would imply thatR′

1 either would not pass through vertexA6 or R′

2 would not pass through vertexA7

(these vertices were determined in a unique way by the already mentioned initial elements). Consequently,
the Pascal 3D configuration is unique for the given initial elements. �

Let us observe that for the three inequalitiesA8 6= A3, A9 6= A4, A10 6= A5 considered in the previous
proof to hold, that linesR3, R4, R5 are not tangent toS is required, or, what is equivalent, thatA3, A4, A5
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are not contained in the cone of vertexV tangent to the quadric is required. For this condition to hold, it
is enough that none of those three points lie on the polar plane of V with respect toS, that is, it is enough
that they do not lie on the conic intersection of this polar plane withS, denotedramification conic ofS with
respect toV . In such assumption, the following result, that solves Conjecture2, follows from Theorem2.

Corollary 2 In a Pascal 3D configuration, all the main diagonals share a point, which polar plane with
respect to the quadric is the Pascal plane of the configuration.

PROOF. The pointV mentioned in Theorem2 lies on the five main diagonalsR1, R2, R3, R4, R5. �

Now, Corollary2allows to complete the configuration considered in Definition1, as detailed afterwards.

Definition 3 The geometric configuration consisting of the elements considered in Definition1, together
with the five main diagonals of the polygonal and its point of concurrency, will be referred to as Pascal 3D
complete configuration (see Figure7). PointV , of concurrency of the five main diagonals, will be named
Pascal centre of the configuration hereinafter.

6 Generating the complete configuration

The results of Section5 suggest a simple method to generate a Complete Pascal 3D configuration, based on
the concurrency of the five main diagonals of the10 side closed polygonal inscribed in the non-degenerated
quadric.

We shall begin by considering the same initial elements as inSection4, that is: the quadric, the five first
side-lines of the polygonal and the common point of the first side-line and its opposite one (determined by
a parameter,λ1, as in Section4).

We shall describe another method later, considering as initial elements: the quadric, the Pascal centre
and the four first side-lines of the polygonal (or, what is equivalent, the first five vertices of the polygonal).

On the other hand, that Condition4 of Definition 1 can be substituted by an equivalent one, but much
simpler to check (that the four pointsV , Ai, Ai+1, Ai+2, for i = 1, 2, . . ., 5, are not coplanary), can be
checked immediately.

6.1 Generation based on the concurrency of the main diagonal s

The process described in the proof of Theorem2 suggests a way to generate the Pascal 3D complete config-
uration, that is detailed in Algorithm2 below (where the command of Section3 that can be used to execute
each step is detailed).

Algorithm 2 Input: quadricS; verticesAi, i = 1, . . ., 6 (with commandvertex )
Output: verticesA7, A8, A9, A10; Pascal centreV ; Pascal planeπ; pointsP1, . . ., P5

Steps:
1. Li := AiAi+1; i = 1, . . ., 5 (with commandline )
2. P1 := A1 + λ1 · (A2 − A1)
3. L6 := A6P1 (with commandline )
4. A7 := L6 ∩ S, such thatA7 6= A6 (with commandnewVertex )
5. R1 := A1A6 (with commandline )
6. R2 := A2A7 (with commandline )
7. V := R1 ∩ R2 (with commandintersection )
8. Ri := AiV ; i = 3, 4, 5 (with commandline )
9. Ai+5 := Ri ∩ S, such thatAi+5 6= Ai, i = 3, 4, 5 (with commandnewVertex )

10.Li := AiAi+1; i = 7, 8, 9 (with commandline )
11.L10 := A10A1 (with commandline )
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12.π := polar plane ofV with respect toS (with commandpolarPlane )
13.Pi := Li ∩ π; i = 2, 3, 4, 5 (with commandintersection )
14. check that it is is a complete Pascal configuration by checking that:

14.1 the vertices are different two by two (with commandequalVertices )
14.2V , Ai, Ai+1, Ai+2 are not coplanary, fori = 1, 2, . . ., 5 (with commandcoplanarPoints )
14.3 planeπ does not pass through verticesAi; i = 3, 4, 5 (with commandisIn ).

Remark 4 It is enough thatAi 6∈ π; i = 3, 4, 5 to assure thatAi+5 6∈ π; i = 3, 4, 5, becauseAi+5

and Ai are harmonically separated with respect toV and Pi. On the other hand, from Theorem2 and
Corollary 2, it follows thatP1 lies onπ and thatP2, P3, P4, P5 lie onL7, L8, L9, L10 (what can now also
be experimentally checked using commandisIn ).

Example of execution of Algorithm 2 In order to simplify the calculations, we shall consider as initial
elements a quadric and vertices which coordinates have simple expressions. They are the hyperboloidS of
equation4x2

1+9x2
2−x2

3−36x2
0 = 0 and the verticesA1 = (1, 5, 0, 8), A2 = (1, 5, 0,−8), A3 = (1, 2, 2, 4),

A4 = (1, 2,−2,−4), A5 = (1, 6, 2, 12), A6 = (1, 3, 0, 0). The execution of Algorithm2, for these initial
data is detailed afterwards.

> S:=4 * x1ˆ2+9 * x2ˆ2-x3ˆ2-36 * x0ˆ2=0;
> A[1]:=vertex([1, 5, 0, 8],S);
> A[2]:=vertex([1, 5, 0, -8],S);
> A[3]:=vertex([1, 2, 2, 4],S);
> A[4]:=vertex([1, 2, -2, -4],S);
> A[5]:=vertex([1, 6, 2, 12],S);
> A[6]:=vertex([1, 3, 0, 0],S);
> for i to 5 do L[i]:=line(A[i],A[i+1]) od;
> P[1]:=pointOnLine(lambda[1],A[1],A[2]);

P [1] := [1, 5, 0, 8,−16λ1]
> L6:=line(P[1],A[6]);
> A[7]:=newVertex(L6,S);
> R[1]:=line(A[1],A[6]);
> R[2]:=line(A[2],A[7]);
> V:=intersection(R[1],R[2]);

V := [16λ1 − 3, 48λ1 − 15, 0,−24]
> for i from 3 to 5 do R[i]:=line(A[i],V) od;
> for i from 3 to 5 do A[i+5]:=newVertex(R[i],S) od;
> for i from 7 to 9 do L[i]:=line(A[i],A[i+1]) od;
> L[10]:=line(A[10],A[1]);
> pi:=polarPlane(V,S);

π := (−1152λ1 + 216)x0 + (384λ1 − 120)x1 + 48x3 = 0
> for i from 2 to 5 do P[i]:=intersection(L[i],pi) od;

P2 := [−39 + 48λ1,−99 + 144λ1, 64λ1 − 64,−72]
P3 := [4, 8, 16λ1 + 1, 32λ1 + 2]

P4 := [−16λ1 − 3,−48λ1 − 15, 16λ1 − 3,−24]
P5 := [16λ1 + 3, 48λ1 + 15, 4, 24]

> equalVertices(VERTICES);
> for i to 5 do coplanarPoints(V, A[i],A[i+1], A[i+2]) od;

false, false, false, false, false

> isIn(A[3],pi), isIn(A[4],pi), isIn(A[5],pi);
false, false, false
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Remark 5 Comparing the parametric method of Section4 with this method based on the concurrency of
the main diagonals, the advantage of the latter is clear (it operates with much shorter expressions, involving
just one parameter instead of three).

6.2 Generation from Pascal point

The generation process is even more simplified when considering as initial elements the quadricS, the
Pascal centreV and the five first verticesA1, A2, A3, A4, A5 (that must not lie on the polar plane ofV

with respect toS, so that they do not lie on the ramification conic ofS with respect toV ). The process is
detailed in the following Algorithm3 (where the command of Section3 that can be used to execute each
step is detailed).

Algorithm 3 Input: quadricS; Pascal centreV (V 6∈ S); verticesAi (Ai 6= V ), i = 1, . . ., 5
Output: verticesA6, A7, A8, A9, A10; pointsP1, . . ., P5; Pascal planeπ
Steps:
1. Ri := AiV ; i = 1, . . ., 5 (with commandline )
2. Ai+5 := Ri ∩ S, such thatAi+5 6= Ai (with commandnewVertex )
3. A11 := A1 (in order to obtainL10 in a briefer way)
4. Li := AiAi+1; i = 1, . . ., 10 (with commandline )
5. Pi := Li ∩ Li+5; i = 1, . . ., 5 (with commandintersection )
6. π := polar plane ofV with respect toS (with commandpolarPlane )
7. Check that it is complete Pascal 3D configuration, by verifying:

7.1 the vertices are different two by two (with commandequalVertices )
7.2V , Ai, Ai+1, Ai+2 are not coplanary fori = 1, 2, . . ., 5 (with commandcoplanarPoints )
7.3 planeπ passes through pointsPi; i = 1, . . ., 5 (with commandisIn ).

Remark 6 The planeπ can also be obtained as the plane through three non-collinear points from among
the five pointsP1, P2, . . ., P5.

Example of execution of Algorithm 3 In order to simplify the calculations, we shall consider as initial
points a quadric and vertices which coordinates have simpleexpressions. They are the paraboloidS of
equationx2

1 + 3x2
2 + 4x0x3 = 0, the Pascal pointV = (1, 2, 1, 12) and the closed polygonal which

first five vertices areA1 = (1, 0, 2,−3), A2 = (1, 1, 1,−1), A3 = (1, 2, 0,−1), A4 = (1, 1,−1,−1),
A5 = (1, 0,−2,−3).

When executing Algorithm3 with these data, the following geometric objects are successively obtained:
the main diagonals of the polygonal; the five remaining vertices, of coordinatesA6 = (7,−96, 62,−741),
A7 = (1,−53, 1,−703), A8 = (3, 6,−52,−679), A9 = (13,−29,−97,−559), A10 = (31,−48,−134,

−453) (the ten vertices are automatically allocated in the globalvariableVERTICES); the ten side-lines
of the polygonal; the five intersection points of opposite side-lines, of coordinatesP1 = (1,−8, 10,−19),
P2 = (−1,−28, 26, 1), P3 = (−5, 16, 26, 5), P4 = (3,−4,−10,−17), P5 = (−117, 96, 158, 1071) and
the Pascal plane, of equation24x0 + 2x1 + 3x2 + 2x3 = 0. Finally, that the steps 7.1, 7.2 and 7.3 of
Algorithm 3 are verified is checked.

Remark 7 In this example, the four first pointsPi of intersection of opposite side-lines of the close polygo-
nal are exterior to the corresponding sides (segments), as can be easily checked (the fifth can not be exterior,
as the polygonal is closed).

7 Conclusions

In order to extend Pascal 2D to 3D in a natural way, substituting conic by quadric, the six sides closed
polygonal has been substituted by a ten sides one, because10− 1 points determine a quadric, the same way
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as6 − 1 points determine a conic. But in the 3D case, that each side-line of the polygonal intersects its
opposite one has to be checked. In case this holds, those five intersection points lie on a plane (that we have
namedPascal plane), the same way as in the 2D case the intersection points of opposite side-lines lie on a
line (Pascal line).

Once this 3D configuration is defined, simple particular cases have been considered (Section2), that
have suggested ideas to advance in the problem. But, when trying to analytically treat not so simple cases,
long expressions arise, what has made advisory to use a computer algebra system (Maple), where an ad-hoc
package has been implemented (it is described in Section3). Using its commands, a parametric generation
method to generate the 3D configuration in an analytic way from the following initial elements: the quadric,
the first five side-lines and the common point to the first side-line and its opposite one, has been applied
(Section4). With this method, that in all the examples tested the five main diagonals of the polygonal share a
point, which polar plane with respect the quadric is the Pascal plane, has been checked. These observations
have lead to conjecture their general validity, that was solved in a synthetic way in Section5. The common
point to all the main diagonals have been denotedPascal centre. These new elements that complete our
Pascal 3D configuration have allowed to simplify the construction process of the configuration in Section6.

We finish comparing Pascal 2D classic configuration with the 3D one developed in this article. In the
first one, three consecutive sides and two intersection points of opposite sides (that is, Pascal line), can
be freely chosen. Meanwhile, in our extension to 3D the five consecutive sides can be freely chosen, but
only one of the intersection points of opposite sides can be freely chosen. Therefore, in both cases half
the side-lines can be freely chosen, three out of six in the 2Dcase and five out of ten in the 3D case. But,
meanwhile in the 2D case two points in the Pascal line can be freely chosen, in the 3D case only one point
on the Pascal plane can be freely chosen. This loss of degreesof freedom is motivated by the need to assure
that in 3D the opposite side-lines of the polygonal do intersect.
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T. Tecio (eds.),Proceedings of EACA 2004. Univ. of Cantabria, Santander (237–242).
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[13] ROANES-MACÍAS, E. AND ROANES-LOZANO, E., (2007). A Maple Package for Automatic Theorem Prov-
ing and Discovery in 3D-Geometry. In: F. Botana and T. Recio (eds),Automated Deduction in Geometry. 6th
International Workshop, ADG 2006. Springer-Verlag LNAI 4869, Berlin-Heidelberg-New York (171-188).
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