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Abstract: A condition needed for testing nested hypotheses from a Bayesian view-

point is that the prior for the alternative model concentrates mass around the

smaller, or null, model. For testing independence in contingency tables, the intrin-

sic priors satisfy this requirement. Further, the degree of concentration of the priors

is controlled by a discrete parameter m, the training sample size, which plays an

important role in the resulting answer.

In this paper we study, for small or moderate sample sizes, robustness of the

tests of independence in contingency tables with respect to intrinsic priors with

different degrees of concentration around the null. We compare these tests with

frequentist tests and the robust Bayes tests of Good and Crook. For large sample

sizes robustness is achieved since the intrinsic Bayesian tests are consistent.

We also discuss conditioning issues and sampling schemes, and argue that condi-

tioning should be on either one margin or the table total, but not on both margins.

Examples using real are simulated data are given.

Key words and phrases: Bayesian inference, Bayes factors, Monte Carlo integration,

Monte Carlo methods, chi-squared tests.

1 Introduction

The problem of testing independence in contingency tables has, to say the least,

a long history (mainly from a frequentist viewpoint). Many controversies have

arisen, concerning the question of whether to condition on marginal totals, whether

inference should be asymptotic or exact, and what statistics should be used for

testing. A good introduction to this topic is the review article by Agresti(1992);

there is also the textbook Agresti(1996).
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Exact frequentist inference in contingency tables can be done by applying

the same test statistic to all tables with the same marginals, and assessing where

the observed table has fallen in this set of reference tables. The first such test

was Fisher’s Exact Test, and this idea is the basis of the statistical package

StatXact (www.cytel.com). The properties of these tests have been investigated

by Mehta and co-authors (see, for example, Mehta et al. 2000). An interesting

alternative approach, called a volume test, was proposed by Diaconis and Efron

(1985), which also contains a discussion on the meaning of the chi squared test.

Early Bayesian analyses of contingency tables were done by Altham (1969,

1971), where a product of binomials and beta priors was considered, but the focus

was not on testing but rather on estimation of the difference of binomial parame-

ters. Leonard (1975) and Nazarret (1987) use normal priors on the log functions

of the cell probabilities for tables with fixed margins and Kadane et al. (2002)

study robustness of some unimodal classes of priors. Gunel and Dickey (1974),

Good (1976), Good and Crook (1987), and Albert and Gupta (1982,1983) use

Dirichlet priors for the vector of parameters p = (p1, ..., pk) of multinomial distri-

butions. The hyperparameters in the Dirichlet are either subjectively determined

or integrated out with the help of a hyperprior distribution.

1.1 Priors for Testing Hypothesis

Some developments have tried to be robust. For instance, Good and Crook

(1987) start with a Dirichlet prior for p with hyperparameters α1 = · · · = αk =

α, and then assume that α follows a hyperprior ranging from the log Normal

distribution to the log Cauchy distribution. Their conclusion was that the log

Cauchy hyperprior gives results that are the most robust.

In general, many priors that might be appropriate for estimation purposes

cannot be recommended as priors for constructing Bayesian tests. This is because

the null hypothesis is not taken into account in the formulation of the prior.

Without doing so, it is impossible to guarantee that the prior distribution will

concentrate around the null hypothesis, a condition that is widely accepted (see,

for example, Jeffreys 1961, Chapter 5, Berger 1994, Berger and Sellke 1987,

Casella and Berger 1987, Morris 1987), and should be required of a prior for

testing a hypothesis.
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Gunel and Dickey (1974), in discussing Bayes factors for contingency tables,

note the importance of the Savage continuity condition. They argue that the most

realistic priors will be “continuous probability densities with high concentrations

on small neighborhoods of ηH” (in their notation ηH is the parameter value in

the null). This is exactly what the intrinsic prior does here. Starting from a

default prior, which will not concentrate probability near H0, but instead will

spread it out in H1 giving high probability to models far from H0, the intrinsic

prior construction creates a new prior that (i) concentrates probability near H0

and (ii) does it in a way that maintains consistency of the tests. That is, as the

sample size becomes infinite, the test will always make the correct decision.

It is important to realize that if a prior on H1 concentrates probability near

H0, this does not necessarily favor H0, but rather focuses the test on model

alternatives that are close to H0. This is important because, if H0 is reasonable,

it is important to be able to distinguish H0 from reasonable alternatives, which

will be close. Putting high prior probability on extreme models, far from H0,

is wasteful. If such models are truly generating the data, this will be easy to

discover with any procedure. If they are not generating the data, which is more

likely, giving them high probability will distort the resulting test, and discount

the more reasonable alternatives.

Lastly, we note that when the row or column totals are fixed, Howard (1998)

argues that the prior parameters should not be independent.

1.2 Intrinsic Priors

Intrinsic priors were introduced in hypothesis testing in order to convert improper

priors into proper ones (Berger and Pericchi 1996, Moreno 1997, Moreno et al.

1998) but there is no inherent limitation in using them when the default prior is

proper. For testing

H0 : {f0(x|p0), π0(p0)} vs. H1 : {f1(x|p1), π1(p1)}, (1)

where f0(x|p0) is nested in f1(x|p1), π0(p0) and π1(p1) are default estimation

priors, the intrinsic prior for p1 conditional on H0 is given by πI(p1|H0) =

π1(p1)Ep1 [m0(x)/m1(x)] where mi(x), i = 0, 1 are the respective marginals and

the expectation is taken with respect to f1(x|p1). This calculation can be done
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Figure 1: Intrinsic priors from the uniform prior for p0 = .1 (left) and p0 = .4 (right) for m =

1, 2, . . . , 25. As m increases the prior concentrates more probability mass in the neighborhood

of p0. The solid curve is the average intrinsic prior.

whether or not any of the priors in (1) are proper or improper. When the priors

are improper, it is typical to choose the sample size for x so that mi(x) is greater

than zero and finite.

It is important to note that here we are using a theoretical x in that no actual

data are used in the construction of the intrinsic prior. In our calculations, x

will be distributed according to either f0(x|p0) or f1(x|p1), with sample size m.

Furthermore, to avoid ambiguities in notation, for the data we will use sample

size n and observations y, and for the theoretical training sample we will have

sample size m and variables x.

As an example, consider the simple case of sampling from a binomial distri-

bution B(y|n, p) with n known. A default prior for estimation of the parameter

p is usually chosen from one of the following distributions: the uniform (Bayes

1783, Laplace 1812), the Jeffreys’s prior (Jeffreys 1961, Bernardo 1979), Zellner’s

prior (Zellner 1977), or that of Novik and Hall (Novik and Hall 1965). The first

two are the most popular and they are proper. The third is proper and the fourth

is improper. Any of these distributions can be used as reasonable default priors
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for estimating p in the absence of subjective prior information (see, for example,

Berger 1985, page 89). However, these priors are not appropriate as they do not

concentrate mass around a null hypothesis, so they are not suitable for testing

hypotheses.

For example, for the testing problem H0 : p = p0 versus H1 : p 6= p0, where p

is the probability of success in a Bernoulli trial, starting from the proper uniform

prior π(p) = 1[0,1](p), the intrinsic prior for p, conditional on the null value p0

and training sample size m, is

πI(p|p0,m) = EM1
B(x|m, p0)∫ 1

0 B(x|m, p)dp

=
1

m + 1

m∑

i=0

Be(p|i + 1,m− i + 1)Be(p0|i + 1,m− i + 1)

where the expectation is taken with respect to the binomial B(x|m, p), and

Be(p|a, b) represents the beta distribution for p with parameters a and b. Figure

1 shows intrinsic priors for two values of p0 and m = 1, 2, . . . 25. The prior is

always unimodal, and for m = 1 it is a linear function of p, but as m increases

it concentrates more probability mass in the neighborhood of p0. When we start

with the Jeffreys prior and m ≥ 2, the resulting intrinsic priors are very close to

those obtained from the uniform. Thus, in this simple case, the intrinsic prior

has provided a default prior that is centered on the null hypothesis. We will see

that this is the case in more complex examples.

We note that the training sample size m plays an important role, in that

it controls the concentration of the prior for the alternative parameter values

around H0. For small m, the intrinsic prior will remain close to the default prior.

For large m, the intrinsic prior is nicely centered on H0, and concentrates higher

mass close to H0. The point is to know how sensitive is the resulting Bayesian

test to variation of the concentration parameter m, a point we will discuss later.

Finally, we note that the construction of the prior is fully automatic.

The approach taken in this paper falls under what has come to be known

as “objective” Bayes analysis, which typically results in the use of priors that

may depend on the model structure. Objective Bayes analyses have become very

popular (see Berger 2000, Clyde and George 2000, Kim and Sun 2000, Wasser-

man 2000, Berger et al 2001, Sweeting 2001, Berger and Pericchi 2006, Girón
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et al. 2006), but are still not universally accepted. In the problem that we are

considering, the use of the intrinsic prior within the objective Bayes framework

produces an answer that is free from shortcomings of some previous approaches.

1.3 Summary

The remainder of the paper is organized as follows. In Section 2 we discuss the

question of the appropriate model for sampling and inference, and conclude that

the most appropriate model is the one with no restrictions on the marginal totals.

In Section 3 we develop the intrinsic priors, and the resulting posterior proba-

bilities, in the 2× 2 case. (Details of the derivations for general a× b tables are

contained in Appendix A.) Consistency is looked at in Section 3.3, with techni-

cal details relegated to Appendix B. In Section 3.4 we also discuss calculation of

the intrinsic priors, which requires summing over all possible tables with table

total m, or row totals mi. Section 4 evaluates the performance of intrinsic pos-

terior probabilities with a number of examples, both real and artificial. Section

5 contains a concluding discussion.

2 Sampling Models and Inference

An a× b two-way contingency table is a vector of observations y = (y11, . . . , y1b,

y21, . . . , y2b, ya1, . . . , yab) of length ab satisfying
∑

yij = n. We denote the row

totals and columns totals by ri(y) and cj(y), respectively. The standard fre-

quentist analysis of the table is a test of independence, with the classical test

being Pearson’s chi squared test. The justification of the test is asymptotic,

and is based on the assumption of having a table with fixed margins, with a

multinomial distribution conditional on the margins.

With small samples or sparse tables, Pearson’s chi squared test is unreliable.

Alternatives are based on considering sets of tables with the same margins as the

observed table, and creating a p-value by counting how many of these alternate

tables have test statistics more extreme that the observed. These so-called exact

tests, which can be seen as generalizations of Fisher’s exact test for a 2×2 table,

have many variations (see Agresti 1992 for a review). The statistical package

StatXact calculates many exact tests.
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What concerns us about this approach is the restriction to the set of tables

with the same margins as the observed table. As we note in Section 2.1, and as

is well-known, there is virtually no realistic sampling scheme that will result in

a table with fixed marginal totals (other than the Lady Tasting Tea). The most

reasonable sampling scheme, which would only condition on the table total, is

rarely used. The reasons for this are mostly technical, not statistical. This is a

problem with a long history which we do not repeat here; the review by Agresti

(1992) discusses the issues involved.

2.1 Sampling Models

Data like those in Table 1 lead us to question the validity of the usual technique

of conditioning on both margins. To obtain data such as these, there are three

possible sampling models that could have been used:

1. Continue sampling until a fixed total number, n, of patients is reached, allo-

cating patients at random to the treatments. This is multinomial sampling.

2. Fix the number of patients to be allocated to each of the two treatments,

and continue sampling until these numbers are reached, allocating patients

at random to the treatments. This is binomial sampling.

3. Fix the number of successes for each of the treatments, and continue sam-

pling until these numbers are reached, allocating patients at random to the

treatments. This is negative binomial sampling.

Note that none of these sampling models would yield as data this contingency

table with both margins fixed.

Although we do not know the sampling rule used to obtain this sample, it is

fairly certain that patients were not sampled until there were 36 cases in which

the cancer was controlled and 5 in which it was not. It is possible that it was

decided to allocate 23 patients to surgery and 18 to radiation therapy, but what

is most likely is the experiment was run with some kind of random allocation,

and was stopped, for some reason, when there were 41 patients. Thus, if we were

to consider a repetition of this experiment, it is reasonable to condition on the

table total 41, or on the margin (23, 18).
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Table 1: Results of a study comparing radiation therapy with surgery in treating cancer of the

larynx (see Agresti 1996, page 50)

Cancer Cancer not
Controlled Controlled

Surgery 21 2 23
Radiation Therapy 15 3 18

36 5 41

Good and Crook (1987) talk about three sampling procedures:

P1 : Condition only on the table total

P2 : Condition only on the totals of one margin

P3 : Condition on the totals of both margins,

and they note that P3 is not a very common sampling model, with P1 and P2

being more useful. They derive Bayesian tests under P1 and P2, using a prior

based on a mixture of Dirichlet distributions. They illustrate the performance of

their method on a number of example tables, both real and artificial. In general,

their answers are reasonable, indicating that calibration of the set of all tables

is possible. However, there are some disturbing anomalies. For example, for the

3 × 3 table in which every cell has a 6 (and of course has a p-value = 1) Good

and Crook report an average Bayes factor of 2.1, which would lead to a posterior

probability of the null hypothesis of 1/(1 + 2.1) = .327. (Our intrinsic procedure

yields posterior probabilities of the null that varies between 0.839 and 0.891 as

the concentration parameter m varies).

2.2 Sufficiency and Ancillarity

The procedure P3 should be discounted as a practical sampling procedure, leaving

us with P1 and P2. These latter procedures arise under two different sampling

schemes and lead to two different distributions.

In an a× b table, if sampling procedure P1 is used, then the distribution of

the frequencies is multinomial with ab cells and total equal to the table total.

There are ab − 1 free parameters, the cell probabilities. If sampling procedure

8



P2 is used, where we fix the a row totals, then the distribution of the frequencies

is that of a independent multinomials, each with b− 1 free parameters and total

equal to the row total. These are obviously different models.

It is possible for a statistic to have the same distribution under either P1 or

P2 (the asymptotics of the chi squared statistic are the same). The question we

look at here is whether is it desirable to have such an equality.

Good and Crook (1987) state the following assumption

Assumption 1: (“Ancillarity of the row totals”). The row totals alone

(or the column totals alone) convey no evidence for or against H0

under P1.

They then argue that this assumption should be reflected in the chosen

statistic, and they choose their prior to force this to be the case, although it

can result in somewhat unreasonable results, as discussed in Sections 2.1 and

4.2. However, we think that P1 and P2 are distinct procedures with distinct

structures, and consequently should have distinct statistics.

To defend our position, we look at the 2×2 case (although we could argue in

the general case) and consider the joint density of x11, r, and c, the (1, 1) obser-

vation, the total of the first row, and the total of the first column, respectively.

Using p to denote the parameter, a direct factorization yields

f(y11, r, c|p) = f(y11, c|r, p)f(r|p).

Assumption 1 above requires that f(r|p) ∝ f(r|p0), where p0 is a null parameter

value. This occurs if r corresponds to the fixed ni with the rows of the table being

independent binomials, or in the 2× 2 table with cell probabilities θij and table

total n, r ∼ binomial(n, θ11+θ12), where the parameter is a marginal probability.

Although this “approximate ancillarity” of r is well known, the distributions are

different and, formally, there can never be equality of the sampling procedures

P1 and P2.

3 Intrinsic Priors for 2× 2 tables

In this section we give a detailed derivation of the intrinsic posterior probabilities

for the 2× 2 table under sampling procedures P1 and P2. We do this simple case
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to better understand the workings of the priors and the resulting probabilities;

the general case is treated in Appendix A.

3.1 Margins Unrestricted

We start with a 2×2 contingency table with n individuals classified into four cells

each having an unknown probability θij , i, j = 1, 2, and
∑

ij θij = 1. Under this

sampling scheme (in which only n is fixed) the distribution of the possible tables

y = {y11, y12, y21, y22} is a three parameter multinomial distribution M(y|n, θij).

A default prior for θij can be taken as either a three dimensional Dirichlet with all

parameters equal to 1/2 (the Jeffreys prior) or the Dirichlet with all parameters

equal to 1 (the uniform prior).

Under the independence assumption θij = piqj , where
∑2

i=1 pi =
∑2

j=1 qj =

1, the two parameter distribution of the table y = {y11, y12, y21, y22} is

f0(y|n, p1, q1) =

(
n

y

)
p
(y11+y12)
1 (1− p1)(y21+y22)

×q
(y11+y21)
1 (1− q1)(y12+y22)

where
(n
y

)
=

( n
y11y21y12y22

)
, the multinomial coefficient. This density is nested

in the multinomial M(y|n, θij). A default prior for the parameters (p1, q1) is

π(p1, q1)=Uniform(p1|0, 1) × Uniform(q1|0, 1).

A default analysis of the testing problem H0 : θij = piqj versus H1 : θij , is

to choose between M0 and M1, where

M0 : {f0(x|n, p1, q1), π(p1, q1)} and M1 : {M(x|n, θij),D3(θij |1, 1, 1, 1)}. (2)

Notice that the default prior D3(θij |1, 1, 1, 1) does not depend on the null. We

use this prior to create an intrinsic prior for θij , a prior that does depend on

H0. We will then substitute the intrinsic prior πI(θij |m) for D3(θij |1, 1, 1) in (2),

where m is the training sample size.

It is straightforward to see that based on a training sample size m, the

intrinsic prior for θij is

πI(θij |m) =
(m + 3)!

[(m + 1)!]2
∑

x:
∑

ij
xij=m

(
m

x

)
(3)
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×
(

2∏

i=1

ri(x)!

) 


2∏

j=1

cj(x)!





∏

i,j

θ
xij

ij

xij !


 . (4)

where ri(x) =
∑2

j=1 xij and cj(x) =
∑2

i=1 xij are the sum of the rows and

columns, respectively. For a data set y = yij , the Bayes factor B10(y), for (3)

versus a uniform prior for p1 and q1, is equal to mI
1(y|n)/m0(y|n), where

mI
1(y|m) =

(
n

y

)
(m + 3)!

[(m + 1)!]2(2m + 3)!

×
∑

{x:
∑

ij
xij=m}

(
2∏

i=1

ri(x)!

) 


2∏

j=1

cj(x)!


 ∏

ij

(xij + yij)!
(xij !)2

.

and

m0(y|m) =

(
n

y

)(∏2
i=1 ri(y)!

) (∏2
j=1 cj(y)!

)

[(m + 1)!]2
.

If a priori we assume that P (M0) = P (M1) = 1/2, then for any training sample

size m the posterior probability of the null is given by

P (M0|y,m) =
1

1 + B10(y)
. (5)

3.2 One Margin Fixed

In this case the sampling scheme is that of sampling from two binomial distribu-

tions B(y1|n1, p1) and B(y2|n2, p2) where n1 and n2 are fixed. The interest is in

testing

H0 : p1 = p2 versus H1 : p1 6= p2,

which is the problem of choosing between the null model

M0 : B(y1|n1, p0)B(y2|n2, p0), πU (p0) = 1(0,1)(p0),

and the alternative

M1 : B(y1|n1, p1)B(y2|n2, p2), πU (p1, p2) = 1(0,1)(p1)1(0,1)(p2).

As in Section 3.1, the conventional uniform prior for (p1, p2) does not depend

on the null model M0, but the intrinsic prior for (p1, p2) concentrates probability

mass around the null hypothesis (the line p1 = p2). With training sample sizes
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m1 and m2, the intrinsic prior is a convex combination of the product of beta

distributions, that is

πI(p1, p2|m1,m2) =
m1∑

i=0

m2∑

j=0

(
m1

i

)(
m2

j

)
Γ(i + j + 1)Γ(m1 + m2 − i− j + 1)

Γ(m1 + m2 + 2)

× Be(p1|i + 1,m1 − i + 1)Be(p2|j + 1, m2 − j + 1).

We see that, under the intrinsic prior, the parameters p1 and p2 are not a priori

independent.

For m1 = m2 = 10 Figure 2, left figure, displays the intrinsic prior. Note

that the probability mass is concentrated around the line p1 = p2, and the prior is

symmetric around this line. For contrast, we also show the recommended prior of

Good and Crook (1987), a log-Cauchy mixture of Dirichlets. Although this prior

is also symmetric around the line p1 = p2, its shape is somewhat unusual. In

contrast to the intrinsic prior, it does not concentrate its mass in a neighborhood

of the line p1 = p2, but rather puts more mass on the boundaries.

The posterior probability of the null for the intrinsic priors (πU (p0), πI(p1, p2|m1,m2)),

conditional on the sample (y1, y2), is given by

P (M0|y1, y2,m1,m2) =
1

1 + B10(y1, y2)
,

where

B10(y1, y2) =
[

n1 + n2 + 1
(n1 + m1 + 1)(n2 + m2 + 1)

] [
(m1 + 1)(m2 + 1)

m1 + m2 + 1

]

×
(

n1 + n2

y1 + y2

)
m1∑

i=0

m2∑

j=0

(m1

i

)2(m2

j

)2

(m1+m2

i+j

)(n1+m1

y1+i

)(n2+m2

y2+j

) . (6)

3.3 Consistency

When the sample information is weak the posterior probability of the models

involved varies as the intrinsic prior varies through the training sample size m.

However, as the sample information becomes stronger, as it does when the sam-

ple size n increases, we expect the posterior probability of the models to be more

robust. In particular, as the sample size n tends to infinity, the sampling dis-

tribution should overwhelm any prior information. Thus, we should be able to

12



Figure 2: Intrinsic prior for (p1, p2) for m1 = 10 and m2 = 10 (left) and the log-Cauchy mixture

of Dirichlets of Good and Crook (1987) (right panel)

prove consistency of the intrinsic Bayesian procedure for any finite training sam-

ple size m. Specifically, for any finite m, we want to insure that when sampling

from the null

lim
n→∞P (M0|y,m) = 1,

and when sampling from the alternative

lim
n→∞P (M1|y,m) = 1.

Indeed, we first consider the case of testing H0 : θ = θ0 versus H1 : θ 6= θ0, where

θ is a binomial success probability, discussed in Section 1.2. We can establish the

following theorem:

Theorem 1 For testing

M0 : B(y|θ0) vs. M1 : {B(y|θ), πI(θ|θ0,m)},

13



the intrinsic posterior probability is consistent, for any finite training sample size

m.

The theorem is proved in Appendix B. There we also extend the result to

other cases considered in this paper.

3.4 Computational Issues

Note that calculating the intrinsic priors in Sections 3 and Appendix A neces-

sitates summing over all tables with table total m. Although this can some-

times be done for the 2 × 2 case, the calculation quickly becomes impossible in

the general case. For example, for the seventh table in Table 3 (the Mendel

data) there are 162, 750, 684, 200, 297, 895 tables with the same table total, and

2, 689, 129, 357, 824 with the same row totals. Thus, to calculate the intrinsic

priors we use a Monte Carlo sum.

Since the space of tables is so large, generating tables uniformly will not

be efficient, as most of the posterior probability will be close to the observed

table. Thus, we use an importance sampling strategy, taking as a candidate

distribution a multinomial with cell probabilities equal to the observed table.

(In theory, the choice of candidate distribution has no bearing on the resulting

calculation. However, choosing the candidate to have high probability near the

observed table will help the Monte Carlo convergence.)

For example, to calculate (11) for an a×b table, the Bayes factor for observed

data y = {yij} with
∑

ij yij = n, we take a candidate distribution

x = (xij) ∼ Multinomial (n, θ̂11, . . . θ̂ab), (7)

θ̂ij =
yij + 1
n + ab

, i = 1, . . . a, j = 1, . . . , b (8)

where the cell probabilities are slightly modified to avoid zero entries. We then

generate xk, k = 1, . . .M and calculate the Bayes factor (11) as

B10(y) =
(m + ab− 1)!

(m + n + ab− 1)!

× 1
M

M∑

k=1

(m
xk

)
(
∏

ri(xk)!) (
∏

cj(xk)!)

(
∏

ri(y)!) (
∏

cj(y)!)

∏
(xkij + yij)!∏

xkij !
1

(m
xk

) ∏
ij θ̂

xkij

ij

.

Calculation of the Monte Carlo sum is typically fast, and between 5000 and

30,000 random vectors have been sufficient for most tables. Even tables with

14



huge marginal totals, such as the income data in Appendix C, can be easily

accommodated.

To calculate the intrinsic priors for the case of one margin fixed, as in (6),

the random variables are generated in each row according to (7).

4 Examples and Evaluations

In this section we evaluate the performance of the intrinsic posterior probabilities

both with a simulation study and a number of examples. We pay particular

attention to the range of posterior answers to check when robustness is present.

Recall from Section 2 that we have derived the posterior probability of the

intrinsic procedure under two different sampling models, P1 and P2. Opera-

tionally, we have found that, for the most part, the posterior probabilities under

these two models tend to be similar. In the following we have computed all of

the posterior probabilities under sampling model P1, in which we only assume

that the table total is fixed. In the absence of firm information to the contrary,

this model seems to be the most likely sampling model under which contingency

table data are collected.

The training sample size m has a natural range from 1 to n, as taking m

larger than n will result in concentrating more mass close to the null. Moreover,

as m → ∞, the posterior probability of H0 goes to 1. So what is of interest is

the behavior of the posterior probability for the range of m from 1 to n, and if

this probability remains flat we interpret this as evidence of robustness.

4.1 2× 2 Tables

Efron (1985) analyzed data from a multicenter trial to see if a new surgical

method for ulcers was superior to an older method (see also Casella 2001). In

each of 39 hospitals a 2 × 2 table was reported, with the successes and failures

for each of the hospitals.

Inspection of the tables1 shows a good deal of variability, both in the number

of patients and the success rates of the table. The first two tables in Table 2 (34
1The notation {a, b; c, d} denotes a 2×2 table with first row {a, b} and second row {c, d}, where here

the rows correspond to the treatments. Thus in the table {8, 7; 2, 11} one treatment had success rate

8/15 and the other had success rate 2/13.
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and 1) suggest that there is association, a conclusion that is strongly supported

by the intrinsic prior analysis. We see that throughout the entire range of m, the

posterior probability of H0 remains below .5.

Table 2: P -values and Posterior Probabilities for Selected Tables from Efron(1985) -
Tables ordered by p-values, which are calculated using Fisher’s exact test. The intrinsic
posterior probability is calculated for both ends of the range; m = 1 and m = n. Note
that the value for m = 1 is identical to that of the uniform prior (which corresponds to
m = 0.

Table Data p-value Uniform Intrinsic Intrinsic
m = 1 m = n

34 {20, 0; 18, 5} .051 .215 .215 .215
1 {8, 7; 2, 11} .054 .170 .170 .253
18 {30, 1; 23, 4} .173 .551 .551 .406
38 {43, 4; 14, 5} .106 .395 .395 .340
16 {7, 4; 4, 6} .395 .451 .451 .497

The next table (18) suggests moderate deviation from the null, and we see

that the range of intrinsic posterior probabilities crosses .5, indicating nonrobust-

ness of the inference. That is, the data are not conclusive in either direction, and

a firm conclusion cannot be drawn here.2 Note that both the uniform posterior

probability and the intrinsic with m = 1 accept the null hypothesis. This illus-

trates a property of priors, such as the uniform, that put a lot of mass at the

extremes of the parameter space. We have observed that such priors tend to be

biased toward H0, but documentation of this bias is difficult.

The final two tables, (38 and 16) both represent robust cases. The intrinsic

posterior probabilities are quite flat throughout the range, and never cross .5.

Table 38 presents stronger evidence against the null, while Table 16 presents

stable, but weak, evidence against the null.

In our view examining the range of the probabilities corresponding to the

intrinsic priors is more informative than just using the uniform prior. The vari-

ability of the posterior probability, as a function of m gives us a lot of information
2Recall that we interpret p-values and posterior probabilities on different scales. Typically, posterior

probabilities of H0 less than .5 are considered evidence against H0, while p-values in the rage of .05 or

less are considered evidence against H0.
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about the robustness of our conclusion.

4.2 The Tables of Good and Crook (1987)

Good and Crook (1987) analyze 21 contingency tables, many drawn from the

literature and some that are artificial. We reanalyze those tables to both show

how our procedure performs, and to contrast it with the robust procedure of

Good and Crook. Table 3 in Appendix C summarizes the results of the 21 tables,

showing the exact p-values3, the posterior probabilities from Good and Crook,

and the resulting ranges of the posterior probabilities of the null for intrinsic

priors when the concentration parameter m varies from m = 1 to m = n.

It is interesting to note that of the twenty-one tables, the Good-Crook ro-

bust posterior probability rejects the null hypothesis in 20 out of 21 cases, only

supporting the null in Table 15, for which the intrinsic posterior answers are

robust, they are in the interval (.872, .964), and the p-value is 1.

On the other hand, the ranges of the intrinsic posterior probabilities of the

null show robustness for most of the tables. Exceptions are some small unbal-

anced tables, (4 and 6), or large dimensional tables with small sample sizes, as the

horsekick table, in which case robustness is not present. For these situations we

either need to add subjective information on the concentration parameter m or

to collect more data; the message is that the data themselves are not conclusive.

To illustrate the effect of varying the parameter m, we look at Figure 3,

which examines the behavior of four interesting tables from Appendix C

In the four tables of Figure 3 we see the entire range of possibilities. Some

tables are robust either for or against H0, while some a nonrobust, having con-

clusions that are dependent on the tails of the prior. In such cases, (for example,

Fienberg or Horsekick) it is important to reassess the prior, for it is clear that

the data alone cannot yield a conclusive decision.

An interesting case is provided by the Mendel data (Table 7, Appendix C).

The intrinsic Bayesian tests are robust, the range of intrinsic posterior proba-

bilities are quite small, and the p-value strongly support the null hypothesis.
3For 2× 2 tables the p-values are calculated using Fisher’s exact test. For larger tables the “exact”

calculation generates a large sample (we used 10, 000) from all tables with the same margins to use as

a reference distribution. This is easily done with the R function chisq.test.
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Figure 3: Ranges of posterior probabilities of four tables from Appendix C. The Mendel data

is table 7 (robust, evidence in favor of null), the Fienberg data is table 6 (nonrobust, evidence

against the null for moderate m), the horsekick data is table 20 (nonrobust, evidence in favor

of the null for large m), and table 3, with no other name, (robust, evidence against the null).

The historical consensus supports the null hypothesis (ignoring the debate about

“cooked” data). However, the GC robust analysis strongly rejects the null hy-

pothesis, which is in opposition to what is commonly concluded about these

data sets. GC defend these conclusions, citing problems with computation, and

“flatness” of the margins.

In the artificial Tables 11-15 (Appendix C), the results of the GC robust

analysis are also not in agreement with our results. These tables all provide

strong evidence for the null (in each table the rows are exactly the same), and

the ranges of the intrinsic posterior probabilities suggest robustness in accepting

the null for all of these tables. The GC robust analysis rejects the null for Tables

11, 12 and 14, provides no conclusion for Table 13, and weakly accepts H0 in
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Table 15. GC explain: “the data suggest that the two-way characterization is

irrelevant: all 9! permutations of the interior of the table are the same.” We do

not fully understand this reasoning, but note that the ranges of intrinsic posterior

probabilities are calculated conditional only on the table total. We must conclude

that the price GC pays to achieve robustness is an increased tendency to reject

the null hypothesis.

As we mentioned above, another instance where the intrinsic posterior anal-

ysis leads to different conclusions is in Table 6 (Appendix C, political preferences,

Bishop, Fienberg and Holland 1978, page 387), where the counts are very un-

balanced. Here both the p-value and the GC robust analysis rejects the null

hypothesis, while the intrinsic posterior analysis will accept the null when m is

small (1 ≤ m ≤ 0.1 n), and will reject when m is large (.1 n ≤ m ≤ n). Bishop,

Fienberg and Holland (1978) give three analyses of this table, and all suggest

that there is some deviation from the null.

5 Discussion

The analysis of contingency tables is somewhat unique because of the discrep-

ancy between the sampling model and the commonly used model for analysis.

Specifically, calculating a test statistic conditional on both margins being fixed

is the most common analysis, but the corresponding sampling model is almost

impossible to realize.

We observe that, from the frequentist point of view, one reason for condi-

tioning on both margins of a table is to obtain a reasonable reference set of tables

for comparison with the observed table. Specifically, not only can the number

of unconditional tables be prohibitively large (as can the number of conditional

tables), but the unconditional set can also contain tables that are so extreme as

to be impossible to ever observe. In our approach, this problem is handled by

the fact that the intrinsic priors give little weight to such tables, and the Monte

Carlo calculations are tailored to ignore these tables of low probability.

A Bayesian analysis of a contingency table starts with a likelihood and a

prior, where the likelihood reflects the sampling model actually used, the prior

typically reflects crude prior beliefs, and evaluates the performance of the result-
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ing procedure. It appears to be widely accepted that prior beliefs should be such

that the parameters should be a priori dependent, as is emphasized strongly by

Howard (1998). This property is typically not satisfied by the usual default prior

for estimation (for example, uniform), but is enjoyed by the Good and Crook

(1987) priors and the intrinsic priors. Another important property, noted by

Gunel and Dickey (1974), is that a prior should give mass to alternatives that

are close to the null. This is also accomplished by the intrinsic priors and the

Good/Crook priors, as can be seen in Figure 2, although the Good/Crook priors

also put high mass to extreme tables.

The priors of Good and Crook (1987) are mixtures of Dirichlets. They take

the mixing parameter to be α, the common exponent in the Dirichlet prior, and

mix the parameter of the range (0,∞) using a heavy-tailed density to achieve

robustness. The intrinsic priors are also mixtures, see (9), and the degree of

concentration around the null is accommodated by a discrete parameter m. To

complete this analogy we could also mix the parameter m with respect to a

hyperprior with a heavy tail. However, the price GC has paid for the robustifi-

cation of the procedure is to have a procedure which can result in unreasonable

conclusions; see Tables 11,12,14,and 15 in Appendix C.

We have learned an important lesson from this work, that in many cases our

conclusion is more sensitive to the prior than we suspect, even when we consider

our prior to be “noninformative” or “robust”. The range of answers that we

have seen from the intrinsic analysis is startling - for a large number of tables

the conclusion can turn from “accept” to “reject”. Unfortunately, we are not

able to classify the types of tables that lead to this nonrobust behavior, although

we suspect that imbalance and sparseness in the cell sizes will contribute to the

sensitivity. However, we do have a diagnostic that can alert us to situations

when consideration of the prior information results in an important factor in the

inference.

We also note that, by construction, the range of the intrinsic priors, from

m = 1 to m = n is a very reasonable range. In terms of the tails of the prior,

we range from extremely flat tails (m = 1) to tails that are equal to those of the

data (m = n). This is a natural bound, as the situation where one would give

more weight to the prior than the data is an extremely rare situation. Thus, we
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have a natural range of priors for assessing robustness.

The performance of the intrinsic posterior probabilities, when starting with

the unconditional likelihood, is extremely attractive: it seems to be robust when

the data are informative enough and, when they are weak, which is often reflected

in imbalance or sparseness of the table, we obtain the warning that the resulting

tests are not robust, thus requiring more prior information or more data.
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A General a× b Tables

In this appendix we generalize the calculations of Section 3 to the case of an a×b

contingency table. The calculations are similar to the previous ones, and hence

are only summarized.

A.1 Margins Unrestricted

We suppose that n individuals have been classified in one of the cells with un-

known probability θ = {θij}, i = 1, ..., a, j = 1, ..., b, and
∑

ij θij = 1. Un-

der this sampling model the distribution of the table y = {yij} is the multi-

nomial distribution M(y|n, θ). A default prior for θ = θij can be either an

(a× b− 1)−dimensional Dirichlet with all parameters equal to 1/2 (the Jeffreys

prior) or a Dirichlet with all parameters equal to 1.

Under the null hypothesis H0 : θij = piqj , the density of the table is

f0(y|n,p,q) =

(
n

y

) ∏

i,j

(piqj)yij ,

and the intrinsic prior is given by

πI(θ|m) =
Γ(m + ab)Γ(a)Γ(b)
Γ(m + a)Γ(m + b)

(9)

×
∑

x:
∑

xij=m

(
m

x

)
(
∏

ri(x)!) (
∏

cj(x)!)∏
xij !

∏
θ

xij

ij , (10)

where we recall that we denote the row totals and columns totals by ri(·) and

cj(·), respectively. For a data set y = (yij) the Bayes factor for the above intrinsic

prior is

B10(y) =
Γ(m + ab)

Γ(m + n + ab)

[
Γ(n + a)Γ(n + b)
Γ(m + a)Γ(m + b)

]
(11)

×
∑

x:
∑

xij=m

(
m

x

)
(
∏

ri(x)!) (
∏

cj(x)!)
(
∏

ri(y)!) (
∏

cj(y)!)

∏
(xij + yij)!∏

xij !
. (12)
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A.2 One Margin Fixed

In the case of one marginal fixed, say the row totals are fixed, the sampling

distribution is that of a independent multinomials. Define

yi = (yi1, ..., yib), pi = (p1j , ..., pib),
b∑

j=1

yij = ni.

Then the variables yi, i = 1, . . . , a are independent with multinomial distributions

M(yi|ni,pi). To test

H0 : p1 = ... = pa, vs. H1 : not H0,

or to compare the models,

M0 :

{
a∏

i=1

M(yi|ni,p0), πD(p0) = Db−1(p0|1, ...1)

}
,

and

M1 :





a∏

i=1

M(yi|ni,pi), πD(p) =
b∏

j=1

Db−1(pj |1, ...1)



 .

The default marginal distributions under these models are

m0(y) =
Γ(b)

Γ(n + b)

a∏

i=1

(
ni

yi

)
b∏

j=1

cj(y)! and m1(y) = Γ(b)a
a∏

i=1

(
ni

yi

)
b∏

j=1

yij !
Γ(ni + b)

,

where n =
∑

i ni. The intrinsic prior for p = (p1, ...,pa) is

πI(p) = Γ(b)
∑

(x1,...,xa):∑
j

xij=mi

∏b
j=1 cj(x)!

Γ(m + b)

∏a
i=1 Γ(mi + b)∏

ij xij !

a∏

i=1

(
mi

xi

)
b∏

j=1

p
xij

ij ,

leading to the intrinsic marginal

mI(y) = Γ(b)
a∏

i=1

(
ni

yi

)∏a
i=1 Γ(mi + b)
Γ(m + b)

×
∑

(x1, . . . ,xa)∑
j xij = mi

∏b
j=1 cj(x)!∏

ij xij !

a∏

i=1

(
mi

xi

)∏b
j=1(xij + yij)!

Γ(mi + ni + b)
.
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For a sample y = (y1, ...,yb) the Bayes factor of model M1 against M0 for the

intrinsic priors (πD(p0), πI(p)) is given by B10(y) = mI(y)/m0(y) with posterior

probability 1/(1 + B10(y)). The Bayes factor changes very little if the Jeffreys

prior, a Dirichlet distribution with parameter (1/2, ..., 1/2), is used instead of the

Dirichlet prior with parameters (1, 1, ..., 1).

B Consistency

Here we give a detailed proof of Theorem 1, consistency of the intrinsic posterior

for the binomial and multinomial cases, and we indicate how the proof extends

to more general cases. We start with a lemma that will be useful in establishing

the results.

Lemma 1 Let a1, a2, . . . , an and b1, b2, . . . , bn be positive constants satisfying
∑

i ai =
∑

i bi = 1. Then
∏

i

(
ai

bi

)ai

≥ 1, (13)

with strict inequality unless ai = bi for all i.

Proof: The log of (13) is
∑

i ai log(ai/bi). Using the facts that
∑

i ai = 1 and

− log is convex, Jensen’s inequality yields

∑

i

ai log(ai/bi) = −
∑

i

ai log(bi/ai) ≥ − log

(∑

i

ai
bi

ai

)
= − log

(∑

i

bi

)
= 0,

establishing the inequality. The strictness also follows from Jensen’s inequality.

B.1 Proof of Theorem 1

For the case of Theorem 1,

H0 : f(y|θ0) vs. H1 : {f(y|θ), πI(θ|m)},

the default marginal distributions are

m0(y) =

(
n

y

)
θy
0(1− θ0)n−y and m1(y) =

∫ 1

0

(
n

y

)
θy(1− θ)n−ydθ =

1
n + 1

, (14)
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leading to the intrinsic prior

πI(θ|m) = (m + 1)
m∑

x=0

(
m

x

)
θx
0 (1− θ0)m−x

(
m

x

)
θx(1− θ)m−x

and intrinsic marginal

mI(y) =
∫ (

n

y

)
θy(1− θ)n−yπI(θ) dθ. (15)

We want to show that the Bayes factor B10 = mI(y)/m0(y) goes to 0 under H0

and ∞ under H1. To show that B10 goes to ∞ under H1, first note that

πI(θ|m) ≥ (m + 1)
m∑

x=0

(
m

x

)
θx
0 (1− θ0)m−xθx(1− θ)m−x

= (m + 1)[θθ0 + (1− θ)(1− θ0)]m

≥ (m + 1) min(θ0, 1− θ0)m = K,

where we have used the fact that
(m

x

) ≥ 1. Thus,

B10 ≥ K

∫ (n
y

)
θy(1− θ)n−y dθ

(n
y

)
θy
0(1− θ0)n−y

=
K

n + 1

(n
y

)−1

θy
0(1− θ0)n−y

. (16)

Stirling’s approximation yields
(

n

y

)−1

≈ n1/2
(

y

n

)y+1/2 (
n− y

n

)n−y+1/2

≈ n1/2θnθ+1/2 (1− θ)n(1−θ)+1/2 ,

since y ≈ nθ as n →∞. Substituting into (16) and rearranging terms yields

B10 ≥ Kn1/2

n + 1

[
θθ(1− θ)1−θ

θθ
0(1− θ0)1−θ

]n

(17)

Finally, note that a(θ) = θθ(1−θ)1−θ

θθ
0(1−θ0)1−θ is minimized (and equal to 1) at θ = θ0.

Thus, for any fixed θ in H1, we have that a(θ) = 1 + ε for some ε > 0,and thus

B10 ≥ Kn1/2

n + 1
(1 + ε)n →∞,
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as n →∞. Thus, for any θ in H1, the Bayes factor goes to infinity and thus the

posterior probability of H0 goes to 0.

To establish consistency if θ0 is the true parameter, we can bound πI(θ|m)

from above, and arrive at (16) as an upper bound (with a different value of K that

will depend on m and θ0 but not n or y). Under H0, y ≈ nθ0, so we obtain the

right side of (17) as an upper bound, but with the expression in square brackets

equal to 1, showing that B10 → 0 as n →∞. Thus, if the parameter value is in

H0, the Bayes factor goes to 0 and the posterior probability of H0 goes to 1, and

the consistency is established.

B.2 Consistency for the Multinomial Case

For the multinomial case the arguments are similar to those in Section B.1. The

models are

M0 : M(x|m, piqj), piqj fixed

M1 : M(x|m, θij), π(θ) = Γ(ab), m1(x) =
Γ(ab)

Γ(m + ab)

(
m

x

) ∏

ij

xij !,

where θ is the vector of θij. The intrinsic prior is

πI(θ) = Γ(m + ab)
∑
xij

∏
ij(piqj)xij

∏
ij xij !

M(x|m, θij).

Using similar arguments to those in Section B.1, we can bound πI either above

or below (depending on what is needed) with a bound independent of θ and n.

Denoting this bound by K, the Bayes Factor is thus

B10 ≈ K

∫
M(y|n, θij) dθ

M(y|n, piqj)
=

K

Γ(n + ab)

∏
ij yij !∏

ij(piqj)yij
.

Using Stirling’s approximation, and replacing yij with nθij yields
∏

ij yij !
Γ(n + ab)

≈ 1
nab−1

∏

ij

θnθij
ij ,

giving the Bayes factor

B10 ≈ K

nab−1


∏

ij

(
θij

piqj

)θij



n

.

26



Under H0 the expression in square brackets is equal to 1, and B10 → 0 as n →∞.

So if H0 is true, the posterior probability of H0 goes to 1. If H1 is true, Lemma

1 shows that the expression in square brackets is equal to 1 + ε, for some ε > 0,

and B10 → ∞ as n → ∞. So if H1 is true, the posterior probability of H0 goes

to 0.

B.3 Extensions

So far we have proved the consistency of the Bayes factor for testing sharp null

hypothesis for models such as

M0 : f(y|θ0) vs. M1 : {f( y|θ), πI(θ|θ0,m)}, (18)

where πI(θ|θ0,m) denotes the intrinsic prior for θ conditional on the null θ0, on

the training sample of size m, and f(y|θ) a binomial or multinomial sampling

model. Here we extend consistency to the case where the null is not a point but

a subspace H0 : θ0 ∈ Θ0 ⊂ Θ.

The nested Bayesian models are now

M0 : {f(y|θ0), π0(θ0)} vs. M1 : {f(y|θ), πI(θ|m)}, (19)

where π0(θ0) is a probability density, and the intrinsic prior for θ is given by

πI(θ|m) =
∫

Θ0

πI(θ|θ0,m)π0(θ0)dθ0 = π1(θ)Ex|θ
m0(x)
m1(x)

,

with m0(x) =
∫

f(x|θ0)π0(θ0)dθ0, m1(x) =
∫

f(x|θ)π(θ)dθ, and π(θ) the default

prior for f(y|θ).

Theorem 2 Assume that for any θ0 ∈ Θ0,

(i) the Bayes factor

B10(y; θ0) =
∫
Θ f(y|θ)πI(θ|θ0,m)dθ

f(y|θ0)
,

is consistent for testing the sharp null hypothesis (18),

(ii) the function f(y|θ0) is a continuous function of θ0,

(iii) the set Θ0 is a compact set, and
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(iv)

k′m = inf
x

m0(x)
f(x|θ0)

> 0, km = sup
x

m0(x)
f(x|θ0)

< ∞.

Then, the Bayes factor for testing (19)

B10(y) =
∫
Θ f(y|θ)πI(θ|m)dθ∫
Θ0

f(y|θ0)π(θ0)dθ0
,

is consistent.

Proof. Suppose first we are sampling from a distribution f(y|θ∗0), where θ∗0 is an

arbitrary but fixed null point. For large enough n we have

B10(y) =
∫
Θ f(y|θ)πI(θ|m)dθ∫
Θ0

f(y|θ0)π0(θ0)dθ0
≈ 1

k

∫
Θ f(y|θ)πI(θ|m)dθ

f(y|θ̂0)π0(θ̂0)

where k =
∫
Θ0

dθ0, and θ̂0 is the MLE of θ0. Then, the intrinsic prior can be

bounded as

πI(θ|m) = π1(θ)Ex|θ
f(x|θ̂0)
m1(x)

m0(x)
f(x|θ̂0)

< kmπ1(θ)Ex|θ
f(x|θ̂0)
m1(x)

= kmπI(θ|θ̂0,m).

Substituting in B10 we have

B10(y) <
km

kπ0(θ̂0)

∫
Θ f(y|θ)πI(θ|θ̂0,m)dθ

f(y|θ̂0)
≈ km

kπ0(θ∗0)

∫
Θ f(y|θ)πI(θ|θ∗0,m)dθ

f(y|θ∗0)
→ 0

where the last expression tends to zero because B10(y; θ∗0) is consistent. This

proves consistency under the null.

Suppose that we are sampling from a distribution f(y|θ∗), where θ∗is an

arbitrary but fixed alternative point. We have

B01(y) =

∫
Θ0

f(y|θ0)π0(θ0)dθ0∫
Θ f(y|θ)πI(θ|m)dθ

<
f(y|θ̂0)∫

Θ f(y|θ)πI(θ|m)dθ
.

Let θ̃0 denote the limit of the MLE θ̂0 when sampling from θ∗. Then, the intrinsic

prior can be written as

πI(θ|m) = π1(θ)Ex|θ
f(x|θ̂0)
m1(x)

m0(x)
f(x|θ̂0)

> k′mπ1(θ)Ex|θ
f(x|θ̂0)
m1(x)

= k′mπI(θ|θ̂0,m).

Substituting in B01 we have for large n,

B01(y) <
1

k′m

f(y|θ̂0)∫
Θ f(y|θ)πI(θ|θ̂0,m)dθ

≈ 1
k′m

f(y|θ̃0)∫
Θ f(y|θ)πI(θ|θ̃0,m)dθ

→ 0,
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where the last expression tends to zero because B01(y;θ̃0) is consistent. This

completes the proof of Theorem 2.

We note that both binomial and multinomial distributions satisfy the conditions

in Theorem 2.
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C The Good/Crook Data and Statistics

Table 3: The 21 Tables of Good and Crook (1987)

Table p-value Posterior Probability of H0
∗

(Good/Crook) (Intrinsic) (Intrinsic)

m = 1 m = n

1. {10, 3; 2, 15} .001 .015 .003 .016

2. {29, 33; 131, 78} .028 .217 .312 .257

3. {200, 8; 182, 20} .018 .156 .361 .179

4. {105, 5; 88, 11} .116 .294 .609 .371

5. {409, 3; 174, 8} .005 .083 .284 .078

6. {225, 53, 206; 3, 1, 12} .041 .125 .933 .241

7. {38, 60, 28; 65, 138, 68; .763 .123 .997 .823

35, 67, 30}
8. {61, 12, 60; 17, 6, 1; 39, 22, 7} .000 .000 .000 .000

9. {17, 4, 8; 5, 12, 0; 10, 3, 13} .000 .000 .000 .000

10. {58, 52, 1; 26, 58, 3; 8, 12, 9} .000 .303 .000 .000

11. {2, 2, 2; 2, 2, 2; 2, 2, 2} 1.00 .450 .648 .701

12. {6, 6, 6; 6, 6, 6; 6, 6, 6} 1.00 .327 .891 .839

13. {1, 2, 3; 1, 2, 3; 1, 2, 3} 1.00 .500 .696 .740

14. {1, 5, 20; 1, 5, 20; 1, 5, 20} 1.00 .294 .988 .855

15. {5, 0, 0; 5, 0, 0; 5, 0, 0} 1.00 .520 .964 .872

16. {6, 0, 0; 0, 6, 0; 0, 0, 6} .000 .000 .000 .000

17. {5, 1, 0; 4, 0, 2; 2, 4, 0} .033 .200 .080 .121

18. {68, 119, 26, 7; 20, 84, 17, 94; .000 .000 .000 .000

15, 54, 14, 10; 5, 29, 14, 16}
18A. {4, 1, 1, 0; 2, 3, 0, 3; .113 .277 .101 .064

1, 2, 2, 0; 0, 0, 0, 1}
19. Income and No.of Children .000 .000 .000 .000

20. Horsekick Data .647 .062 .021 .999

∗ The uniform prior corresponds to the intrinsic prior with m = 0. In all calculations this posterior

probability was identical to that of the intrinsic prior with m = 1, so the column of uniform posterior

probabilities is not shown.
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Table 19: Income and Number of Children, Diaconis and Efron (1985)

2161 3577 2184 1636

2755 5081 2222 1052

936 1753 640 306

225 419 96 38

39 98 31 14

Table 20: Horse Kick Data

1875 0 0 0 0 0 0 0 1 1 0 0 0 1 0 3

1876 2 0 0 0 1 0 0 0 0 0 0 0 1 1 5

1877 2 0 0 0 0 0 1 1 0 0 1 0 2 0 7

1878 1 2 2 1 1 0 0 0 0 0 1 0 1 0 9

1879 0 0 0 1 1 2 2 0 1 0 0 2 1 0 10

1880 0 3 2 1 1 1 0 0 0 2 1 4 3 0 18

1881 1 0 0 2 1 0 0 1 0 1 0 0 0 0 6

1882 1 2 0 0 0 0 1 0 1 1 2 1 4 1 14

1883 0 0 1 2 0 1 2 1 0 1 0 3 0 0 11

1884 3 0 1 0 0 0 0 1 0 0 2 0 1 1 9

1885 0 0 0 0 0 0 1 0 0 2 0 1 0 1 5

1886 2 1 0 0 1 1 1 0 0 1 0 1 3 0 11

1887 1 1 2 1 0 0 3 2 1 1 0 1 2 0 15

1888 0 1 1 0 0 1 1 0 0 0 0 1 1 0 6

1889 0 0 1 1 0 1 1 0 0 1 2 2 0 2 11

1890 1 2 0 2 0 1 1 2 0 2 1 1 2 2 17

1891 0 0 0 1 1 1 0 1 1 0 3 3 1 0 12

1892 1 3 2 0 1 1 3 0 1 1 0 1 1 0 15

1893 0 1 0 0 0 1 0 2 0 0 1 3 0 0 8

1894 1 0 0 0 0 0 0 0 1 0 1 1 0 0 4

16 16 12 12 8 11 17 12 7 13 15 25 24 8 196

Data available at http://www.galton.uib.no/FordKurs/Datasets.html
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