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Abstract This article presents a survey of the authors’ research on knowledge extraction and verification
of Rule Based Expert Systems (RBES) using algebraic inference engines and based on Gröbner bases
theory. A shell, including a graphic user interface and inference engines for different logics (both classic
and modal multi-valued) as well as in different computer algebra systems, is also presented here. The
shell distinguishes three levels: at the lower level, we provide the computer algebra system code of
the algebraic inference engines; at the intermediate level, the RBES developer has to detail the rules
and integrity constraints of a certain RBES; and, finally, at the upper level, the final user deals with a
simple GUI, where he can perform knowledge extraction or verify the RBES, after choosing the logic and
inputing a consistent set of facts. We believe that this shell can be really useful for teaching and quick
RBES design.

Una aproximación algebraica a los sistemas expertos basados en reglas

Resumen. Este artı́culo presenta una panorámica de la lı́nea de investigación de los autores en ex-
tracción de conocimiento y verificación de Sistemas Expertos Basados en Reglas (RBES) usando motores
de inferencia algebraicos y basada en la teorı́a de bases de Gröbner. Se presenta también una shell, que
incluye una interfaz gráfica de usuario y motores de inferencia para distintas lógicas (tanto clásicas como
modales multivaluadas) y en distintos sistemas de cómputo algebraico. La shell distingue tres niveles:
en el más bajo proporcionamos el código del motor de inferencia para el sistema de cómputo algebraico
elegido; en el intermedio el desarrollador del RBES tiene que detallar las reglas y las restricciones de
integridad de un cierto RBES; y, finalmente, en el nivel superior, el usuario final trata con una sencilla
interfaz gráfica de usuario, en la que puede llevar a cabo extracción de conocimiento o verificar el RBES,
después de elegir la lógica y de introducir un conjunto consistente de hechos. Creemos que esta shell
puede ser realmente útil para la enseñanza y para el rápido diseño de RBES.
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1 Introduction

This article presents a survey of the authors’ research on knowledge extraction and verification of Rule
Based Expert Systems (RBES) using algebraic inference engines. These inference engines are based on the
use of Gröbner bases. The leader of the research team is Luis Laita, and the first works on the topic are
dated in the early 90’s, although he had already been working in the field using other techniques.

The present paper is self-contained, in such way that introductory well-known sections 2, 5, 7may be
skipped by an acquainted reader, while the other sections convey a view of new results and approaches by
the authors. The article begins with a brief introduction to lattices, lattice orders, Boolean algebras and
Boolean rings (Section 2). It is followed by the construction of the polynomial model for Boolean logic due
to these authors (Sections 3 and 4). Then a brief introduction to modal multi-valued logics can be found
(Section 5). Section 6 introduces the main result of this theory, relating to be a tautological consequence
with a polynomial ideal membership. A brief introduction to RBES is included afterwards (Section 7).
Section 8 details the adaptation of the algebraic model for logic to RBES. In Section 9 it is shown how two
levels of inconsistency can be distinguished in the multi-valued case (including an interpretation in algebraic
geometry). Section 10 introduces how (in RBES whose underlying logic is classic Boolean logic), given
a set of facts, it is possible to find out which new fact can make a certain goal be inferred, just computing
a Gröbner basis. Implementations in the computer algebra systems (CAS) CoCoA and Maple are included
in Section 11. Finally, a GUI for keeping the CAS hidden from the final user of the RBES is presented in
Section 12.

In view that quite a number of topics are treated, many proofs are omitted for the sake of brevity (in
fact, some of the proofs are very long, for instance, the one connecting the concept of being tautological
consequence in multi-valued logic with an ideal membership in a polynomial residue class ring). Anyway,
references where the reader can find details on the topics treated can be found along the paper.

2 An introduction to Boolean algebras and Boolean rings

An elementary introduction to Boolean algebras may be found in [21]. The proofs omitted in this section
can be found in [18, 28] (these references also extend both Sections 3 and 4). For a deeper study of Boolean
algebras see, for instance, [10, 11, 12, 22, 36].

2.1 Lattices and lattice orders

Definition 1 A set L where two binary operations t and u are defined is said to be a lattice if and only if
both operations are commutative and associative and the absorption laws holds, i.e., if and only if for all
elements a, b, c ∈ L:

a t b = b t a a u b = b u a
a t (b t c) = (a t b) t c a u (b u c) = (a u b) u c
a t (b u a) = a a u (b t a) = a

Proposition 1 If (L,t,u) is a lattice, both operations verify idempotency, i.e., for every element a ∈ L:

a t a = a a u a = a

Surprisingly, idempotency, although redundant, is often required as a fourth condition for a structure to
be a lattice.

Definition 2 A non-strict partial order defined over the set L is said to be a lattice order if and only if
every pair of elements of L has a unique infimum and a unique supremum.
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Proposition 2 From the two lattice operations, t and u , a lattice order v can be defined: for all
elements a, b ∈ L:

a v b⇔ a t b = b (⇔ a u b = a)
Conversely, from a lattice orderv , the two operations of a lattice can be defined: for all elements a, b ∈ L:

a t b = supv(a, b)

a u b = infv(a, b)

Example 1 Let us consider the lattice of “subsets of E”: (P(E),∪,∩). From (P(E),∪,∩), (P(E),⊆)
is obtained. Conversely, from (P(E),⊆), (P(E),∪,∩) is obtained.

2.2 Boolean algebras
Definition 3 A lattice (L,t,u) is said to be distributive if and only if both operations are distributive
w.r.t. the other operation, i.e., if and only if for all elements a, b, c ∈ L:

a t (b u c) = (a t b) u (a t c) a u (b t c) = (a u b) t (a u c)

Definition 4 A lattice is said to be bounded if and only if it has a greatest element (top), g, and least
element (bottom), l.

Definition 5 A bounded lattice (L,t,u) is said to be complemented if and only if for every element
a ∈ L, there is an element a′ ∈ L such that:

a t a′ = g a u a′ = l

The top and bottom of a lattice are traditionally denoted 0 and 1. However this seems not to be an
adequate notation, as the top and bottom of (L,t,u) and those of (L,u,t) are exchanged.

Definition 6 A Boolean algebra is a distributive and complemented lattice.

Example 2 (P(E),∪,∩, ′) is a Boolean algebra:

• ∪ is distributive w.r.t. ∩ and viceversa.

• The least and the greatest of the lattice (for ⊆) are ∅ and E, respectively. Moreover, the usual
complement of a set, ′ , works as expected:

∀A ∈ P(E) : A ∪A′ = E ; A ∩A′ = ∅

Let us underline that being distributive is completely independent from being complemented, as shown
below.

Example 3 The lattice of the linear subspaces (also denoted “vector subspaces”) of R2, the sum of linear
subspaces and intersection is a complemented, but not distributive, lattice:

• the complement of a line is any other (different) line, and the complement of the whole plane is {0},

• if R, S, T are different lines, R+ (S ∩ T ) 6= (R+ S) ∩ (R+ T )).

Example 4 The lattice (N, lcd, gcd) (where lcd and gcd stand for “least common multiple” and “greatest
common divisor”, respectively) is distributive, but it is not complemented: 1 and 0 are the least and greatest
of the lattice (respectively), but, for instance, 3 has no complement.

Example 5 The lattice of the convex subsets of the plane, the convex union
∗
∪ (i.e., the least convex set that

contains the usual union) and intersection is a lattice, but it is neither distributive nor complemented:

• for instance, if A, B, C are three disjoint and aligned squares of equal size and A is the one in the
middle A ∩ (B

∗
∪ C) = A, meanwhile (A ∩B)

∗
∪ (A ∩ C) = ∅

∗
∪ ∅ = ∅,

• there is no convex subset of the plane that behaves as the complement of a line.
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2.3 Boolean rings
Definition 7 A Boolean ring is a ring with unit such that the second operation is idempotent.

Let us include below some well-known results that will be useful when obtaining the polynomial model
for Boolean logic. Let us denote by (L,∆,u) a general Boolean ring, by 0 its neutral element, by ′ the
symbol for the opposite and by 1 its unit.

Proposition 3 In any Boolean ring (L,∆,u) any element is its own opposite.

PROOF. For any elements a, b ∈ L:

(a∆ b) ∆ 0 = a∆ b = (a∆ b) u (a∆ b) = (a u a) ∆(a u b) ∆(b u a) ∆(b u b)
= a∆((a u b) ∆(b u a)) ∆ b = (a∆ b) ∆((a u b) ∆(b u a))

but (L,∆) is a group, so the opposite is unique, and consequently: 0 = (a u b) ∆(b u a). Therefore, in the
particular case that a = b, from the idempotency of u, we would obtain: 0 = a∆ a. �

Proposition 4 Any Boolean ring (L,∆,u) is a commutative ring.

PROOF. It follows from the equality

0 = (a u b) ∆(b u a)

in the previous proof and the facts that (L,∆) is a group (and therefore the opposite is unique) and that any
element is its own opposite. �

Proposition 5 A Boolean ring (L,∆,u) can be defined from a Boolean algebra (L,t,u, ′): for all
elements a, b ∈ L:

a4b = (a u b′) t (a′ u b)
Conversely, a Boolean algebra (L,t,u, ′) can be defined from a Boolean ring (L,∆,u): for all

elements a, b ∈ L:
a t b = (a4b)4(a u b)

and if 0 and 1 are the neutral elements of ∆ and u (respectively), then 0 is the least, 1 is the greatest, and:

a′ = a∆ 1

Example 6 (P(E),∪,∩, ′) is a Boolean algebra (least: ∅; greatest: E). If we define the symmetric
difference of two elements of P(E), A and B, as:

A4B = (A ∩B′) ∪ (A′ ∩B)

we have that (P(E),4,∩) is a commutative ring with unit: all properties are a straightforward conse-
quence of the same property of the Boolean algebra or can be obtained from a simple symbolic manipulation
(like the commutativity and associativity of4 ). Moreover:

• ∅ is the neutral element for4 (and the absorbent element of ∩ ),

• E is the neutral element for ∩ ,

• ∀A ∈ P(E), A4A = ∅, so any element in P(E) is its own opposite.

Example 7 (P(E),4,∩) is a Boolean ring. If we define in this ring the following operation:

A tB = (A4B)4 (A ∩B)

the operation ∪ is obtained. If we define
A′ = A∆E

the usual complement of a set is obtained.
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3 A polynomial model for propositional logic
We can obtain a polynomial model for the Boolean algebra associated to (propositional) Boolean Logic, as
suggested in Figure 1.

propositional Boolean algebra oo
Boolean algebra

isomorphism
//

OO

��

polynomial Boolean algebraOO

��
propositional Boolean ring oo

ring

isomorphism
// polynomial (Boolean) ring

Figure 1. Isomorphisms between polynomial and propositional Boolean algebras and Boolean
rings.

In logic, we usually work in the structure in the upper left corner of the diagram of Figure 1. Meanwhile,
in commutative algebra we normally work in the structure in the lower right corner of this diagram. But
we can move from the propositional Boolean algebra to the polynomial ring following the two alternative
paths in this diagram. The advantages of working in a polynomial ring are that:

• there is a powerful tool that solves the ideal membership problem: Gröbner bases,

• there are many implementations of Buchberger’s algorithm for computing Gröbner bases, i.e., per-
forming effective calculations in algebra. In fact, most CAS, like Maple, Mathematica, Axiom, Mu-
PAD, Reduce, Derive, CoCoA, Singular, Risa/Asir,. . . include implementations of this algorithm.

As a consequence, we shall be able to implement very easily an algebraic tool to perform effective compu-
tations in propositional Boolean logic. Moreover, it will be possible to extend this tool to perform effective
computations in modal multi-valued logics (like Łukasiewicz, Kleene and Bochvar). Finally, it will be pos-
sible to use the same computational tool to perform verification and knowledge extraction in RBES based
on both classic Boolean and modal multi-valued logics.

3.1 Building the Taylor-made polynomial (Boolean) ring (A, +, · )
Let us build a polynomial Boolean ring (A,+, · ) so that:

• every element is its own opposite, i.e., for all a ∈ A, a+ a = 2 · a = 0, so it would be reasonable to
consider A as a ring over a field with characteristic 2,

• idempotency holds for the second operation, so it would be reasonable to consider the residue class
ring over the polynomial ideal 〈p2 − p, q2 − q, . . . , r2 − r〉, where p, q, . . . , r are the polynomial
variables.

Therefore, we shall consider:

A = Z2[p, q, . . . , r]/〈p2 − p, q2 − q, . . . , r2 − r〉

Proposition 6 The polynomial product in A is idempotent.

PROOF. It is enough to take into account that any polynomial a ∈ A can be written:

a = δ0 + δp · p+ δq · q + · · ·+ δr · r + δpq · p · q + · · ·+ δpqr · p · q · r + · · ·

where all the δ belong to Z2, and compute a2. �

It is well-known that an algebraic structure like (A,+, · ) is a ring (denoted residue class ring) and,
therefore, we have the following:
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Corollary 1 The ring (A,+, · ) is a Boolean ring.

Proposition 7 All elements in (A,+, · ) are zero divisors (in fact an analogous result holds in any
Boolean ring).

PROOF. a · (1 + a) = a+ a2 = a+ a = 2 · a = 0. �

3.2 The polynomial Boolean algebra (A, +̃, · , 1+) corresponding to the po-
lynomial (Boolean) ring (A, +, · )

Let us define a (polynomial) Boolean algebra (A,t, · , ′) from the (polynomial) Boolean ring (A, +̃, · ), as
shown in Proposition 5. For all a, b ∈ A:

a t b = (a+ b) + (a · b)
a′ = a+ 1

The first operation will be hereinafter denoted +̃ and 1+ will denote the addition of 1. 0 is the least and 1
is the greatest of the Boolean algebra (A, +̃, · , 1+): for all a, b ∈ A,

a+̃0 = a+ 0 + a · 0 = a a · 0= 0
a+̃1 = a+ 1 + a · 1 = 1 a · 1= a

Unlike what happens in a ring, it is not usual to establish priorities for the operations in a Boolean
algebra (as the structure is completely “symmetrical”). Nevertheless, we shall consider, hereinafter, that ·
is prioritary w.r.t. +̃.

Proposition 8 The lattice order defined in (A, +̃, · , 1+) as suggested in Proposition 2: ∀a, b ∈ A,
a ≤ b⇔ a · b = a is, precisely, “is a multiple” (a is a multiple of b⇔ ∃k ∈ A : a = b · k).

PROOF. ⇒) ∀a, b ∈ A: a ≤ b⇔ a · b = a ⇒ a is a multiple of b
⇐) ∀a, b ∈ A: a is a multiple of b⇔ ∃k ∈ A : a = b ·k ⇒ a ·b = (b ·k) ·b = b2 ·k = b ·k = a⇔ a ≤ b.

�

Proposition 9 For all a, b ∈ A:

(1) a · b = a

(2) a+̃b = b

(3) (1 + a)+̃b = 1

(4) a · (1 + b) = 0

are equivalent (an analogous result holds in any Boolean algebra).

4 The Boolean algebra isomorphism ϕ

Let ∨, ∧, ¬,→ denote the logic disjunction, conjunction, negation and implication, respectively.
Let (C,∨,∧,¬,→) be the Boolean algebra of the propositions that can be constructed using a finite

number of propositional variables P , Q, . . . , R. Let us denote tautology by 1 and contradiction by 0.
Let us consider the Boolean algebra (A, +̃, · , 1+, “is a multiple”), where A is the residue class ring

A = Z2[p, q, . . . , r]/〈p2 − p, q2 − q, . . . , r2 − r〉
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We define:
ϕ : (C,∨,∧,¬,→) −→ (A, +̃, · , 1+, “is a multiple”)

in the following way. For propositional variables

P −→ p

Q −→ q

. . . . . .

R −→ r

and for any A, B ∈ C

A ∨B −→ a+̃b
¬A −→ 1 + a

Therefore, as an immediate consequence of the De Morgan laws:

A ∧B −→ a · b

Moreover, as the (lattice) order can be obtained from the operations of the lattice, ϕ preserves the ordering.

Proposition 10 ϕ is well defined.

PROOF. For all propositions A, B:

A↔ B ⇒ A→ B and B → A⇒
⇒ ϕ(A) is a multiple of ϕ(B) and ϕ(B) is a multiple of ϕ(A)⇔
⇔ a is a multiple of b and b is a multiple of a⇔ a = b. �

Corollary 2 ϕ is an order-preserving homomorphism, and ϕ(1) = 1, ϕ(0) = 0.

Remark 1 In order to save space, we shall sometimes write b|a (“b divides a”) instead of “a is a multiple
of b”.

Proposition 11 ϕ is surjective.

PROOF. The elements of the (Boolean) ring A (they are the same as those of the Boolean algebra A) are
a linear algebraic combination of the polinomial variables, and:

ϕ(P ∧Q) = p · q
ϕ((¬P ∧Q) ∨ (P ∧ ¬Q)) = p+ q. �

Proposition 12 ϕ is injective.

PROOF. Let us suppose that for two propositions, A and B, we have: ϕ(A) = a, ϕ(B) = b and a = b. As
a = b, we have: a|b and b|a. But ϕ preserves the ordering (i.e.,→ and “is a multiple” do correspond), so:

b|a⇒ A→ B; a|b⇒ B → A

and therefore A↔ B. �

25



E. Roanes-Lozano, L. M. Laita, A. Hernando and E. Roanes-Macı́as

Remark 2 To be precise, we really consider C/↔ and A/ = (Lindenbaum algebras) in order for the
relations→ and ≤ to be anti-symmetric.

Example 8 Let P and Q be the propositional variables of C. Then C has 16 elements and (C,→) is the
transitive closure of the diagram in Figure 2. It corresponds in ϕ with (A, “is a multiple”), where

A = Z2[p, q]/〈p2 − p, q2 − q〉

and “is a multiple” is the transitive closure of the diagram in Figure 3.
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Figure 2. (C,→) when there are two propositional variables.
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Figure 3. (A, “is a multiple”) when there are two polynomial variables.

4.1 Ideals of a Boolean algebra and ideals of a ring
Definition 8 Let (R,+, · ) be a commutative ring. A subset I ⊆ R is said to be an ideal of R if and
only if:

1) ∀i, i′ ∈ I : i+ i′ ∈ I

2) ∀i ∈ I, ∀a ∈ R : a · i ∈ I

(i.e. I is a subring of A such that the product of an element of the ring by an element of the subring always
belongs to the subring).
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Definition 9 Let (R,+, · ) be a commutative ring. Let S 6= ∅, S ⊆ R. The ideal generated by S =
{p1, . . . , pm}, denoted 〈p1, . . . , pm〉, is the smallest ideal containing S. If S = {q}, the ideal generated by
q, 〈q〉, is said to be a principal ideal, and results to be:

〈q〉 = { a ∈ A : q|a }

Despite the concept of ideal is usually associated with rings, ideals are also defined in Boolean algebras.
In such case, the definition is different (based on the lattice order), and only ideals generated by a single
element are considered.

Definition 10 In the propositional Boolean algebra (C,∨,∧,¬,→), the (principal) ideal generated by Q
is defined as

EQ = {X ∈ C : X → Q }

Similarly, in the polynomial Boolean algebra (A, +̃, · , 1+, “is a multiple”), the (principal) ideal gener-
ated by q ∈ A is:

Eq = { a ∈ A : a is a multiple of q }

Proposition 13 As ϕ preserves the ordering, the ideals of the Boolean algebra (C,∨,∧,¬,→) do corre-
spond in ϕ with the ideals of the Boolean algebra (A, +̃, · , 1+, “is a multiple”).

Proposition 14 The ideals of the Boolean algebra (A, +̃, · , “is a multiple”) are obviously ideals of the
ring (A,+, · , “is a multiple”).

Theorem 1 (A,+, · ) is a ring where all ideals are principal ones.

PROOF. Let s1, s2, . . . , sn ∈ A. We shall prove that 〈s1, s2, . . . , sn〉 = 〈s1+̃s2+̃ · · · +̃sn〉 in two steps:

i) +̃ is an internal operation in the ideal (because + and · also are internal operations) and therefore:

s1+̃s2+̃ · · · +̃sn ∈ 〈s1, s2, . . . , sn〉 ⇒ 〈s1+̃s2+̃ · · · +̃sn〉 ⊆ 〈s1, s2, . . . , sn〉

ii) That s1+̃s2+̃ · · · +̃sn|si; i = 1, . . . , n can be easily proven. But, then: si ∈ 〈s1+̃s2+̃ · · · +̃sn〉;
i = 1, . . . , n and, consequently, the minimum ideal that contains {s1, s2, . . . , sn}, is contained in
〈s1+̃s2+̃ · · · +̃sn〉, i.e.:

〈s1, s2, . . . , sn〉 ⊆ 〈s1+̃s2+̃ . . . +̃sn〉. �

Remark 3 Let us observe that (A,+, · ) is not a “Principal Ideals Domain” because it is not an integrity
domain (see Proposition 7).

Corollary 3 As a consequence of Proposition 13, Proposition 14 and Theorem 1, the ideals of the polyno-
mial Boolean algebra (A, +̃, · , “is a multiple”) are precisely the ideals of the polynomial ring (A,+, · ).

5 Introductory note about multi-valued propositional logics

A simple introduction to the topic can be found in [37].
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5.1 Kleene’s and Łukasiewicz’s three-valued logic

Kleene’s and Łukasiewicz’s multi-valued logics are two of the most commonly used multi-valued logics.
We shall begin introducing these three-valued logics, in which a third truth value is considered.

In Kleene’s logic this third valued is “undecided”. If an assertion is assigned the truth value “undecided”
that means that at present, we can’t assign a truth-value to this conjecture (but the conjecture is either true
or false). For instance, if we are reasoning in a medical diagnostic RBES, until we receive the result of a
test, its truth value is “undecided”, but it will become either true or false in the future (when we receive the
results). Kleene’s A→ B is equivalent to ¬A ∨B.

Two modal unary connectives, necessary (�) and possible (♦) are usually considered in multi-valued
logics. Kleene’s three valued logic truth-tables are detailed in Tables 1 and 2 (note that 0 represents “false”,
1 represents “undecided” and 2 represents “true”). It would also be possible to assign numbers to truth
values in a different way. For instance, in Kleene’s three valued logic, it is also common to consider that 0
represents “false”, that 2 represents “undecided” and that 1 represents “true”. In such case the corresponding
truth tables would obviously change.

¬
0 2
1 1
2 0

�
0 0
1 0
2 2

♦
0 0
1 2
2 2

Table 1. Truth-tables of Kleene’s three-valued logic unary connectives.

∧ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

∨ 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

→ 0 1 2
0 2 2 2
1 1 1 2
2 0 1 2

↔ 0 1 2
0 2 1 0
1 1 1 1
2 0 1 2

Table 2. Truth-tables of Kleene’s three-valued logic binary connectives.

In Łukasiewicz’s logic the third truth value considered is “indeterminate”. If a statement is considered
to be indeterminate, it is neither true not false, but indeterminate in a metaphysical sense. All connectives
have the same truth tables as in Kleene’s logic, except→ and↔ (see Table 3).

→ 0 1 2
0 2 2 2
1 1 2 2
2 0 1 2

↔ 0 1 2
0 2 1 0
1 1 2 1
2 0 1 2

Table 3. Truth-tables of the Łukasewicz’s three-valued logic binary connectives whose truth-tables
are different from Kleene’s ones.

Remark 4 It is also possible to consider more than three truth values, so that the confidence in the truth-
fulness of statements can be graded. Moreover, there are other multivalued logics aside from Kleene’s and
Łukasewicz’s.
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5.2 Tautological consequence

Definition 11 A propositional formula A0 is a tautological consequence of the propositional formulae
A1, A2, . . . , Am, denoted {A1, A2, . . . , Am} |= A0, if and only if whenever the formulae A1,. . . ,Am hold
(i.e., take the truth value “true”), then A0 also holds (i.e., takes the truth value “true”).

Remark 5 Let us observe that:

• in Boolean logic, there are formulae that can only take the truth value “false”, such as P ∧ ¬P ,

• in multi-valued logic, there are also formulae that can only take the truth value “false”, such as
�P ∧�¬P .

• in multi-valued logic, there are formulae that, although can take other truth values different from
“false”, they can never take the truth value “true”, such as P ∧ ¬P (observe that not only �P ∧
�¬P |= P ∧ ¬P , but also P ∧ ¬P |= �P ∧�¬P ).

5.3 The isomorphism ϕ in the multi-valued case

Let (C,∨,∧,¬,→) be a p-valued logic, where p is a prime number (we require p to be a prime in order for
Zp to be a field) and C is the set of propositions that can be constructed using the propositional variables
X1, X2, . . . , Xn. If in the residue class ring

A = Zp[x1, x2, . . . , xn]/〈xp
1 − x1, x

p
2 − x2, . . . , x

p
m − xm〉

adequate polynomial translations of the logical connectives are defined (so that they behave as suggested
by the truth-tables), the natural correspondence ϕ, defined as in the Boolean case (Section 4), is also an
isomorphism.

6 The main Theorem

6.1 A brief note about Gröbner bases

In the early 60’s, both Heisuke Hironaka and Bruno Buchberger independently proved that, for each poly-
nomial ideal, a basis completely identifying it always exists. They denoted their bases as standard bases
and Gröbner bases (GB) [4, 5], respectively. The latter’s great advantage was that it provided a constructive
method (Buchberger’s algorithm). Some GB are particularly important: we call them reduced Gröbner
bases. We say that a Gröbner basis is reduced if and only if the leading coefficient of all its polynomials
is 1 and we cannot simplify any of its polynomials by adding a linear algebraic combination of the rest of
the polynomials in the basis. The input to Buchberger’s algorithm is a polynomial set, a term order (for
instance, “total degree” or “pure lexicographical”), and a variable order (for instance, x > y > z) and its
output is the ideal’s reduced GB with respect to the specified term and variable orders.

The key point is that, once the term order and the variable order are fixed, such a reduced GB completely
characterizes the ideal: any ideal has a unique reduced GB. As a consequence we have two key results:

i) two sets of polynomials generate the same ideal if and only if their reduced GB are the same,

ii) {1} is the only reduced GB for the ideal that is equal to the whole ring.

An elementary introduction to the use of GB in algebraic system solving can be found in [33, 34]. For
detailed introductions see, for instance, [1, 2, 9, 16, 38]. There are interesting applications in other fields
like transportation engineering [32, 30].
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6.2 Connecting “To be a tautological consequence” with an ideal member-
ship

The main theorem is the following:

Theorem 2 A logical formula,A0, is a tautological consequence of the set of formulae {A1, A2, . . . , Am}
in a certain p-valued modal logic (where p is a prime number) if and only if the polynomial translation
of ¬A0 in A = Zp[x1, x2, . . . , xn]/〈xp

1 − x1, x
p
2 − x2, . . . , x

p
m − xm〉, ϕ(¬A0), belongs to the ideal

〈ϕ(¬A1), ϕ(¬A2), . . . , ϕ(¬Am)〉 of A.

The key point is that this theorem can take advantage of the two important results stated at the end of
the previous section. The proof of this theorem is really long and can be found in [19, 27].

7 Some introductory notes about RBES

A RBES consists of an “input”, an “output”, a “knowledge base” and an “inference engine”. A graphic
user interface is frequently provided. The input of a RBES is concerned with the information related to the
environment of the RBES. Since the environment may change, this information is also subject to change as
times goes by. This information is described by means of a finite number of different atomic propositions:
such propositions are termed as input atomic propositions. Input atomic propositions determine what we
will call potential facts (see Definition 13). The output of a RBES is concerned with the information inferred
by the RBES. It is described by means of a finite number of atomic propositions which we shall call output
atomic propositions. The knowledge base (KB) of the RBES is concerned with the information contained
in the system, which is used along with the input of the RBES to infer the output of the system. In a RBES
based on propositional Boolean logic, this knowledge-base will be mostly represented by a finite set of
rules.

Remark 6 We shall use hereinafter the following notation: z may mean:

• no symbol at all or “negation” (denoted ¬), if the underlying logic is classic Boolean,

• no symbol at all, “negation”, “possibility” (denoted ♦), “necessity” (denoted �), or a combination
of these symbols, like “necessarily-not” (denoted �¬), equivalent to ¬♦, if the underlying logic is a
modal multi-valued one.

7.1 Rules

Definition 12 The KB consists of a certain number of logical formulae of the form:

∧k
i=1zX[i] −→ ∨l

j=1zX[j]

known as production rules (and usually refereed to as, simply, rules).

For example, formula

X[1] ∧X[2] ∧ ¬X[3] ∧ ♦X[4] ∧ ¬X[5] −→ X[13] ∨�¬X[17]

is read as: “IF X[1] and X[2] and not X[3] and possibly X[4] and not X[5] HOLD, THEN X[13] or
necessarily-not X[17] HOLDS”.

Let us underline that there is no constraint in the structure of the rules: the ocurrences of “∧” in the
consequent and of “∨” in the antecedent of a rule can be avoided (if such symbols ocurred in a rule, the rule
could be split into rules without these symbols).
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7.2 Potential facts and facts. Integrity constraints
Definition 13 A formula A is a potential fact if and only if A ≡ zX[i], where X[i] is an input atomic
proposition.

Definition 14 That a given set of facts (i.e., a subset of the set of potential facts that is stated as true) is
consistent means that, for each propositional variable appearing in the potential facts of the system, X[k],
at most one expression of the form zX[k], is chosen. That a given set of facts is maximal means that, for
each propositional variable appearing in the potential facts of the system, X[k], exactly one expression of
the form zX[k], is chosen.

Definition 15 An integrity constraint (IC) is a piece of knowledge added by the experts and expressing
that some potential facts cannot hold at the same time.

For instance an IC could be: man ∧ pregnant. The negation of the ICs (sometimes denoted “NICs”)
have to be added to the KB.

7.3 The inference engine. RBES inconsistency
The inference engine (IE) is an automated tool (in our case, a program in the CAS), that verifies consistency
and draws tautological consequences from the information contained in the KB.

Definition 16 That a formula A be obtained by forward firing of the formulae in the union, G, of a con-
sistent set of facts and the set of all production rules and the set of the negation of the integrity constraints
of a RBES means that G |= A.

Definition 17 A RBES is said to be inconsistent if there is a consistent set of facts verifying that con-
tradiction can be obtained by forward firing of these facts and the rules and the negation of the integrity
constraints in the KB. Otherwise the RBES is said to be consistent.

8 Knowledge extraction in RBES through the use of an alge-
braic inference engine

This extension of the algebraic method to RBES was already mentioned in [18] and detailed in [26].

8.1 A polynomial model for the propositional Boolean algebra associated
to RBES

The Boolean algebra associated to a RBES whose underlying logic is classic Boolean logic is a structure
(C∗,∨,∧,¬,→) where→ is the relation obtained applying the rules of logical deduction to the implications
of C and the rules, facts and the negations of the integrity constraints of the RBES (consequently, → is
not the usual implication), and C∗ is the set of equivalence classes defined by this enlarged equivalence
relation↔ in C.

If the rules Rule1, . . . , Rulev , the facts Fact1, . . . , Factm and the integrity constraints IC 1, . . . , IC u

of a RBES are added as true to the Boolean algebra C of the previous section, the structure obtained is
isomorphic to the image of A in the natural surjective homomorphism

ψ : A −→ A/J

where J is the ideal

〈ϕ(¬Rule1), . . . , ϕ(¬Rulev), ϕ(¬Fact1), . . . , ϕ(¬Factm), ϕ(¬IC 1), . . . , ϕ(¬IC u)〉

31



E. Roanes-Lozano, L. M. Laita, A. Hernando and E. Roanes-Macı́as

8.2 The main theorem adapted to knowledge extraction in RBES

The main theorem detailed above can be adapted to treat the logic underlying a RBES:

Theorem 3 A formulaA0 can be obtained by forward firing of the formulae in the union of a consistent set
of facts and the set of all production rules and the negation of the integrity constraints of a RBES, if and only
if, the polynomial translation of the negation ofA0 belongs to the ideal J ofA = Zp[x1, x2, . . . , xn]/〈xp

1−
x1, x

p
2 − x2, . . . , x

p
n− xn〉, generated by the polynomial translations of the negations of the given potential

facts, of the negations of all the production rules, and the integrity constraints of the RBES.

Remark 7 Observe that, denoting I = 〈xp
1 − x1, x

p
2 − x2, . . . , x

p
m − xn〉, we could alternatively check

that A0 belongs to the ideal I + J of Zp[x1, x2, . . . , xn]. We usually work this way as most CAS are not
prepared to perform computations in a residue class ring.

We have extensively used this approach in RBES design and verification. [20] is an interesting example
in medicine (regarding techniques for coronary surgery), where we could find a situation that could lead to
an inconsistency and was not taken into account by the panel of experts.

9 RBES strong and weak inconsistency. Algebraic interpreta-
tion

An introduction to verification can be found in [17]. This section summarizes [31].
We shall make the following distinction in the multi-valued case:

Definition 18 We shall say that there is strong inconsistency if and only if the conjunction of the facts in
a certain consistent set of facts, the rules and the negations of integrity constraints of the RBES, can only
take the truth value “false”.

Definition 19 We shall say that there is weak inconsistency if and only if all formulae can be obtained by
forward firing of the formulae in the union of a certain consistent set of facts, the set of all production rules
and the set of the negations of integrity constraints of the RBES.

Proposition 15 Independently of the number of truth values (p) of the underlying logic:

strong inconsistency⇒ weak inconsistency.

PROOF. If there is strong inconsistency, we have a consistent set of facts {Fact1, . . . ,Factm} such that:

Fact1 ∧ . . . ∧ Factm ∧ Rule1 ∧ . . . ∧ Rulev ∧NIC 1 ∧ . . . ∧NIC u

can only take the truth values false. But

{Fact1, . . . ,Factm,Rule1, . . . ,Rulev,NIC 1, . . . ,NIC u}
|= Fact1 ∧ . . . ∧ Factm ∧ Rule1 ∧ . . . ∧ Rulev ∧NIC 1 ∧ . . . ∧NIC u

so a contradiction can be obtained by forward firing of the formulae in

{Fact1, . . . ,Factm,Rule1, . . . ,Rulev, IC 1, . . . , IC u},

and, therefore, we have weak inconsistency. �
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Proposition 16 If the underlying logic is Boolean:

weak inconsistency⇒ strong inconsistency.

PROOF. If there is weak inconsistency, we have a consistent set of facts {Fact1, . . . ,Factm} such that any
formula follows of the formulae in {Fact1, . . . ,Factm,Rule1, . . . ,Rulev, NIC 1, . . . ,NIC u} by forward
firing. In particular,

{Fact1, . . . ,Factm,Rule1, . . . ,Rulev,NIC 1, . . . ,NIC u} |= contradiction

But we are considering that the underlying logic is Boolean, so:

Fact1 ∧ . . . ∧ Factm ∧ Rule1 ∧ . . . ∧ Rulev ∧NIC 1 ∧ . . . ∧NIC u → contradiction

and therefore Fact1 ∧ . . . ∧ Factm ∧ Rule1 ∧ . . . ∧ Rulev ∧ NIC 1 ∧ . . . ∧ NIC u can only take the truth
value “false”. �

Remark 8 The previous result does not hold if the underlying logic is a multi-valued one.

Example 9 Let us consider a small RBES whose KB consists of the rules:

R1 :X[1]→ X[3]
R2 :X[2]→ ¬X[3]

and whose underlying logic is Kleene’s three-valued logic. The potential facts are X[1] and X[2]. If we
draw consequences from the maximal set of potential facts {X[1], X[2]}, we obtain X[3] ∧ ¬X[3]. As this
formula can only take the truth values “undecided” or “false”, any formula can be obtained by forward
firing of it, and, consequently, by forward firing of the formulae in {X[1], X[2], R1, R2}. Therefore we
have weak inconsistency. Meanwhile, we cannot obtain a formula that is always “false” by forward firing
of the conjunction of the facts in any consistent set of facts and R1 ∧R2. Therefore, we do not have strong
inconsistency.

Corollary 4 There is weak inconsistency if and only if

1 ∈ 〈f¬(ϕ(Rules)), f¬(ϕ(Facts)), f¬(ϕ(NICs))〉.

But, what is the meaning of strong inconsistency in the polynomial model?

Definition 20 The algebraic variety corresponding to the polynomial ideal I is the set of points of the
respective affine space which satisfy all polynomials in the ideal I . We shall denote it by V (I).

Lemma 1 For any positive prime integer p > 1, we have:

i) There are non-zero ideals in Zp[x1, x2, . . . , xm] whose algebraic variety is the whole affine space.

ii) The only ideal in A = Zp[x1, x2, . . . , xm]/I; I = 〈xp
1 − x1, x

p
2 − x2, . . . , x

p
m − xm〉 whose variety

is the whole affine space is the zero ideal.

PROOF.

i) For example x · (x − 1) = x2 − x ∈ Z2[x] is not the null polynomial but its value is always 0 in
{0, 1}. Therefore 〈x2 + x〉 verifies condition i). The same occurs with x · (x− 1) · (x− 2) ∈ Z3[x].
Its value in {0, 1, 2} is always 0. This construction can be obviously generalized to Zp[x].
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ii) Case I: Univariate polynomials. If 0, 1, . . . , p− 1 are roots of a polynomial in A = Zp[x]/〈xp − x〉,
then the polynomial is either 0 or it can be factored as

x · (x− 1) · · · · · (x− (p− 1)) · · · ·

Therefore, if this polynomial is different from 0, its total degree is greater or equal than p. But in A
all polynomials are simplified to polynomials of degree lesser than p, so this polynomial simplifies
to 0.
Case II: Multi-variate polynomials. It can be proved by applying the previous case to the intersections
of the hypersurface by hyperplanes parallel to the “vertical” axis. �

Theorem 4 There is strong inconsistency if and only if

V (〈ϕ(Rules ∧ Facts ∧NICs)〉)

is the whole (respective) affine space.

PROOF.

Rules ∧ Facts ∧NICs can only take the truth value “false”⇔
⇔ polynomial ϕ(Rules ∧ Facts ∧NICs) can only take the value 0⇔

⇔ V (〈ϕ(Rules ∧ Facts ∧NICs)〉) is the whole (respective) affine space. �

But we can express the previous result in terms of ideals instead of algebraic varieties, what makes it
easily decidable using Gröbner bases:

Corollary 5 There is strong inconsistency if and only if 〈ϕ(Rules ∧ Facts ∧ NICs)〉 is the zero ideal of
A = Zp[x1, x2, . . . , xm]/I .

10 Backward reasoning in rule based expert systems whose
underlying logic is classic Boolean logic

Details on the topic of this section, our most recent result, can be found in [25]. Based on the classical
works of automatic discovery of geometric theorems [14, 23] (a topic already advanced in [8]), we have
now adapted this idea to a specific task in RBES whose underlying logic is classic Boolean logic: given a
set of facts and a goal, finding a new fact such that if it also held, this goal would be inferred. The main
result proven in [25] (Theorem 5 below) shows how it is enough to compute one single reduced GB in order
to detect them:

Theorem 5 Let A1, . . . , Ak, B ∈ C∗ be formulae such that {A1, . . . , Ak} 6|= B. Let C be a potential fact.
Let G be the reduced GB of the ideal 〈ϕ(¬A1), . . . , ϕ(¬Ak), ϕ(B)〉+ I . We have that:

{A1, . . . , Ak, C} |= B ⇔ ϕ(C) ∈ G

Observe that the membership relation in the right hand side of the equivalence refers to a membership
to the set of polynomials in the reduced GB, not to the ideal generated by that basis.

11 Implementation in a Computer Algebra System
As most CAS include an implementation of GB and of “normal forms” (reductions modulo an ideal), to
develop an inference engine in a CAS following the method detailed above (based on checking polynomial
ideal memberships) is straightforward and surprisingly brief.
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11.1 Polynomial translation of the logical connectives

For instance, the polynomial expressions corresponding to the basic logical formulae in Łukasiewicz’s
three-valued logic (if 2 is assigned to “true”, 1 to “undetermined” and 0 to “false”) are detailed afterwards.

• ¬M is translated into the polynomial: 2−m

• ♦M is translated into the polynomial: 2m2

• �M is translated into the polynomial: m2 + 2m

• M ∨N is translated into the polynomial: m2n2 +m2n+mn2 + 2mn+m+ n

• M ∧N is translated into the polynomial: 2m2n2 + 2m2n+ 2mn2 +mn

• M → N is translated into the polynomial: 2m2n2 + 2m2n+ 2mn2 +mn+ 2m+ 2

• M ↔ N is translated into the polynomial: m2n2 +m2n+mn2 + 2mn+ 2m+ 2n+ 2

(note that the coefficients of these polynomials belong to Z3).
The polynomials corresponding to the different logics can be obtained by solving an algebraic system

that is obtained from the truth tables.

11.2 CoCoA implementation

These polynomial translations can be input almost directly in CoCoA 4.3 [6, 35], which provides a “Normal
Form” command, NF(pol,I), that returns the reduction of polynomial pol modulo ideal I .

We have to define the polynomial ring and ask CoCoA to use it:

USE Z/(3)[x[1..15]];

and then we can define the ideal MEMORY.I, generated by the expressions x3
i − xi (denoting it this way, it

is a global variable, and it can be an input to NF):

MEMORY.I:=Ideal([x[K_]ˆ3-x[K_] | K_ In 1..15]);

and introduce the polynomial expressions for the three-valued connectives of Łukasiewicz modal logic (the
operators are prefix ones)1:

NEG(M):=NF(2-M,MEMORY.I);
POS(M):=NF(2*Mˆ2,MEMORY.I);
NEC(M):=NF(Mˆ2+2*M,MEMORY.I);
OR(M,N):=NF(Mˆ2*Nˆ2+Mˆ2*N+M*Nˆ2+2*M*N+M+N,MEMORY.I);
AND(M,N):=NF(2*Mˆ2*Nˆ2+2*Mˆ2*N+2*M*Nˆ2+M*N,MEMORY.I);
IMP(M,N):=NF(2*Mˆ2*Nˆ2+2*Mˆ2*N+2*M*Nˆ2+M*N+2*M+2,MEMORY.I);
IFF(M,N):=NF(Mˆ2*Nˆ2+Mˆ2*N+M*Nˆ2+2*M*N+2*M+2*N+2,MEMORY.I);

For instance, the CoCoA implementation of the polynomial expressions of a 7-valued modal logic can be
found in [27].

Whether A0 is a consequence of a set of formulae or not, can be checked with CoCoA just typing:

NF(NEG(A[0]),MEMORY.I+J);

(where J is the polynomial ideal generated by the polynomial expressions of the negation of the formulae
in the given set). If the output of the command is 0, the answer is “yes”, otherwise the answer is “no”.

1In CoCoA 4.7 these operators would be defined using Define...EndDefine instead of directly :=.
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It can also be directly checked using the Boolean command IsIn, that tests ideal memberships, by
typing:

NEG(A[0]) IsIn MEMORY.I+J;

Whether the RBES is inconsistent or not can also be checked using Gröbner bases by typing in CoCoA:

GBasis(MEMORY.I+J);

If the output is 1, the RBES is inconsistent; otherwise (the output is normally a large set of polynomials),
that set of facts doesn’t lead to an inconsistency.

Using IsIn makes it even simpler, as it directly returns “true” or “false”, just typing:

1 IsIn MEMORY.I+J;

11.3 Maple implementation

Let us implement the model in Maple. We have developed different implementations in Maple, but the one
presented afterwards is the most modern and fastest [29]. In Maple (version ≥ 10) it is possible to define a
polynomial ring over a finite field using Maple’s Ore Algebra. In this way, the NormalForm command
is computed in such ring. We load the Gröbner and Ore algebra packages first, and then define the
list of variables, the polynomial ring and the order that will be used by the GB-related commands:

with(Groebner):
with(Ore_algebra):
SV:=x[1],x[2],x[3]:
A:=poly_algebra(SV,characteristic=3):
Orde:=MonomialOrder(A,’plex’(SV)):

and the ideal I (denoted iI, as I is a reserved word in Maple), using map in order to save time:

fu:=v->vˆ3-v:
iI:=map(fu,[SV]);

3 3 3
iI := [x[1] - x[1], x[2] - x[2], x[3] - x[3]]

We can now define the functions that associate to the logical connectives their polynomial expressions, as
done in CoCoA above.

NEG :=(m::algebraic) -> NormalForm(2-m,iI,Orde):
NEC :=(m::algebraic) -> NormalForm(expand(mˆ2+2*m),iI,Orde):
POS :=(m::algebraic) -> NormalForm(expand(2*mˆ2),iI,Orde):
‘&AND‘:=(m::algebraic,n::algebraic) ->

NormalForm(expand(2*mˆ2*nˆ2+2*mˆ2*n+2*m*nˆ2+m*n),
iI,Orde):

‘&OR‘ :=(m::algebraic,n::algebraic) ->
NormalForm(expand(mˆ2*nˆ2+mˆ2*n+m*nˆ2+2*m*n+m+n),

iI,Orde):
‘&IMP‘ :=(m::algebraic,n::algebraic) ->

NormalForm(expand(2*mˆ2*nˆ2+2*mˆ2*n+2*m*nˆ2+m*n+2*m+2),
iI,Orde):

‘&IFF‘ :=(m::algebraic,n::algebraic) ->
NormalForm(expand(mˆ2*nˆ2+mˆ2*n+m*nˆ2+2*m*n+2*m+2*n+2),

iI,Orde):
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12 Description of the shell

A GUI was presented at FLINS’2008 conference [24], and a complete shell is now provided. When working
with the shell we could distinguish three levels.

At the lower level, we provide the CAS code for performing knowledge extraction and verification
in different logics (i.e., we provide the algebraic inference engines). For instance, to work with the CAS
CoCoA 4.3 in Boolean logic with the propositional variables x1, . . . , x5, the code that contains the algebraic
model of the IE should be included in the file named CODE CoCoA.TXT. It would look like:

USE Z/(2)[x[1..5]];
MEMORY.I:=Ideal([x[K_]ˆ2-x[K_] | K_ In 1..5]);
NEG(M):=NF(1+M,MEMORY.I);
OR(M,N):=NF(M+N+M*N,MEMORY.I);
...

(similar to the code shown in Section 11.2). Some lines regarding I/O between the GUI and the CAS follow.
At the intermediate level, the RBES developer details the concrete potential facts, rules and integrity

constraints of a certain RBES (the code must be stored in file RBES.TXT).

Example 10 For instance, the production rules and IC of a tiny RBES whose underlying logic is classic
Boolean and their CoCoA translations can be (note that in a real RBES there would be dozens of rules):

R1 : x[1]→ x[2] R1:=IMP(x[1],x[2]);
R2 : x[2] ∧ ¬x[3]→ x[4] R2:=IMP(AND(x[2],NEG(x[3])),x[4]);
R3 : x[1] ∧ x[4]→ x[5] R3:=IMP(AND(x[1],x[4]),x[5]);
NIC1 : ¬(x[3] ∧ x[5]) NIC1:=NEG(AND(x[3],x[5]));

At the upper level, the final user does not have to deal directly with the CAS but with a simple GUI.
Both the number of truth values of the logic (e.g., 3) and the desired logic (e.g., Kleene’s) are to be chosen
beforehand. Then consistency can be checked and knowledge extraction performed. To do so, a list formed
by a proposition and a (consistent) list of facts has to be introduced. The GUI calls the CAS and checks
firstly if they lead to inconsistency. Afterwards, it checks if the given proposition follows from the given set
of facts.

Example 11 Let us consider the tiny RBES of Example 10. If the list of given facts is [x[1],¬x[3]], an
inconsistency is not obtained. Moreover, x[4] ∧ x[5] follows from them (see Figure 4).

This GUI has been implemented in Visual-BASIC and runs on computers using the most common
windows-based operating system. Porting it to other operating systems is under consideration now. It
can call (at least) the mathematical systems: CoCoA, Maple, Maxima, Singular, Risa-Asir and Octave.

13 Conclusions

We believe that this algebraic approach is flexible and powerful (as several logics can be easily and effec-
tively simulated) and that the whole shell now put together can be really useful for teaching and for quick
RBES designing. This approach has the advantage over that of Kapur-Narendran [15] and Hsiang [13]
for Boolean logic (or Alonso et al. [3] and Chazarain et al. [7] in the multi-valued case) of providing an
algebraic structure that is isomorphic to the propositional algebra, instead of only performing effective com-
putations in logic using Gröbner bases. This is the key for going one step further and obtaining an algebraic
structure isomorphic to a RBES based on one of these logics, i.e., from

A = Zp[x, y, . . . , z]/〈xp − x, yp − y, . . . , zp − z〉
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Figure 4. Screenshot of a GUI for RBES consistency checking and knowledge extraction.

to
A/J

where J is the ideal generated by the negation of the facts, rules and integrity constraint, so that knowledge
extraction and verification of RBES can be performed.
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[31] ROANES-LOZANO, E.; ROANES-MACÍAS, E. AND LAITA, L. M., (1999). Geometric Interpretation of Strong
Inconsistency in Knowledge Based Systems. In V. G. Ganzha, E. W. Mayr, E. V. Vorozhtsov (editors), Computer
Algebra in Scientific Computing. Proceedings of CASC’99). Springer-Verlag, 349–363.
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