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Abstract

The paper concerns a boundary value problem for a system of hyperbolic partial differential
equations of arbitrary order with two independent variables that is a generalization of the problem
examined by Z. Szmydt [7].

1. Boundary value problems for hyperbolic equations or systems of
order higher than two with the boundary conditions given on more than two
non-characteristic curves have been examined by O. Sjöstrand [6], Z. Szmydt
[7], A. Borzymowski [l]-[3] andM. Michalski [4], [5].

The aim of this paper is to study a boundary value problem generalizing
that of Z. Szmydt [7] (cp. Remarks 1 and 3 in the sequel). We reduce our
problem to a system of nonlinear integro-functional equations and then
apply the Schauder fixed point theorem. The uniqueness of the solution is
proved by using the Banach fixed point theorem.

2. Let p, q € IN, where IN is the set of all positive integers, and let rt
and r2 be positive divisors of p and q, respectively, such that k: - p/r^ =
= q/r2. Consider the rectangle £1 = [O, A] x [O, B] (O < A, B < <=°) and
introduce two systems of curves placed in Í2 and given by the equations
y = fa (x) (a = 1, 2, ..., r2 ) and x = hß O) (ß = l, 2, ..., ̂  ), respectively.

For fixed n E IN we introduce the following notation

u={u '} ( i=l ,2 , . . . ,n) ;

V={vi>a] with v}, a = D'¿ Dr¿ -a lì -1 u ;
ü)

W = [w,- ß } with w,-,ß = Dr
x
l ~ß Drì L' ~l u ;

Z = {Zj,ß,a} with Zf,ß,0i=Dr
x
i~ß Dr

y*-«l}'1 u
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( /= 1 , 2 , ..., k; a =1,2, ...,r2; 0= 1, 2, ...,/-,), where L = D? Df ;
Lõu = u; Lvu = L(Lv-lu) for Kv<k.

Consider the following system of partial differential equations

L*u(x,y) = F[x,y,Z(x,y), V(x,y), W ( x , y ) ] (2)

((x,y)€.n), where F={F'} (z= 1, 2,...,«) is a given function.
We denote by Jf the class of functions w : Í2 -» IR" such that the deri-

vatives y / (0, w /(j3 and z)>ßi0l (j = l, 2, ..., k; a. = l, 2, ..., r2 ; ß = l,
2, ..., /-j ) introduced in (1) exist, are continuous and do not depend on the
order in which the last mixed differentiation^) is performed.

By a solution of equation (2) in S2 we mean a function u €E J? posses-
sing continuous derivative Lku and satisfying system (2) at each point
(x,y)GSl.

We pose the following problem (P):
Find a solution u of system (2) in Í2 satisfying the boundary conditions

V f , a [ x , f t t ( x ) ] = e f i a ( x , Z [ x , f a ( x ) ] , W[x,fa(x)]);
Wj,ß [hß O), y]=gj,ß (y, Z[hß (y), y], V[hß (y), y})

and
fo o o ..

zj, ß, a (xj, ß, a* y¡, ß,a)~ uj, ß, a C4)

((x, y) e íí; / = 1 , 2 , ..., k; a = 1,2, ...,r2; j3^ 1,2, ....rO, where e/>a =
= {el

Loi} and ^/>jS = {g*.^} (i=\, 2, . . . ,M) are given functions, uj>ß>a =
= {u'. } (i = l , 2, ..., M), where ul. ß a are given numbers, and the points

(x/, 0, a, y/, ß, oi) are arbitrarily fixed in S2.
We make the following assumptions that will be in force in sections

3 and 4:

I. The functions fa: [0, A] ~* [0, B] and hß: [O, B] -»• [0,^4]
(a= 1,2, ...,r2 ; /3=1,2, . . . ,?! ) are continuous.

II. The function F: n x IRK ->• ]Rn (where K = fcn (rj + r2 + rt r2 ))
is continuous and satisfies the condition(**)

|F(x,^,S,/i1,H2)|<JS:1 +K2%0 +K'2^'0 (5)

(2 = «/.p.«}, tf1 = {»î/o). #2 = {T?A/3}; i = 1, 2, ..., n; / = l,
2, ..., /c; a= 1,2, ..., r2; 0 = l ,2, . . . , r i ) , where ̂  , AT2 and ̂
are positive constants, and ^?0 and &0 are given by

(*) That is the differentiationDr
x^Dr

yï
 a, D^ ? ]f^ and X»Ji ^Dy2 a, respectively.

("**) Above, |F Cx.y.E.A1 ,^)! = max \Fl (x,y,S,Hl ,H2)\. The symbols \e¡ aOc,S,
K /<n

A2 )| and |¿y jj (y, S, if1 )| etc. appearing in the sequel will be understood in a similar way.
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?o= 2 2 2 l & . f t o l r * (6)/ = i a = i /3=1

and

<% = E S |T?/,ar*+ 2 S litfpl ' . , (7)
/ = i a = i / = 1 / 3 = 1

respectively, with r» e (O, l).
III. The functions ejt0i: [0,A] x 1RK-knri -» IR" andg,->(3: [0,5] x

x R"-*"'! -HR" (/=1,2,. . . ,*:; a= 1,2, ...,r2; 0= 1,2, ...,/•,)
are continuous and satisfy the conditions

¡*/f a (x, S, /P ) |< KZ + K4 <£0 + K'* fi

ig/ .pCy.s^K^+^So+j&ri^,

respectively, where J5T3, Ä"4 and K't, are positive constants, and *%[
and ^2 denote the expression ^¿ (cp. (7)) with the first or second
term, respectively, being omitted.

Remark 1.— If r^ — p\ TI—CI (as a consequence fc=/'=l), then our
problem (P) is identical with the problem (Q) examined by Z. Szmydt [7].

3. In this section we will prove some lemmas.

Lemma l.— lfu is of class P%. and satisfies condition (4), then

Í
* (x _ if)*3"1

(j3 _ 1); y/,a(l,7)^ +

" x^"" f C (y-n)"
+ 2 ^—r:i , ,,. w/, „ (0,17) ¿T? +

" = i QS-»»)! U o («- !>'

+IC-^
a-M T|

-M)! J~

•í
>y (y -T jyn- i a ^a-M

— —— Wj ß (x, r f ) d r i + 2 —
(a- 1)! / > p M = I (a-M)!
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«X ( v _ £ f - l ? X^-V "I

j V^r-»-<*•»«+à*-¡rd «
((x,>0e«; /= 1 ,2, ...,*; a= 1,2, ...,/•,; /3- 1,2,... ,^), where C(M =
= {Cj'L} are functions of F and PV defined recursively by the formula(*)

4>-M (¿/...M-tr1

'•" "''"'" Jo ("-O!<*.„ ="/,^ -f"" (Jg/>r 5 »/> «.A,'.M)* +
^ o

» S."-* Cyi.v,v- i°v ^^r/ v/";: ;:. ^.,.(0,^^ +XJ,;:M í '"* (y/.^-^y-1

' » - ï (y-s)! J0 (M-l)!

°V-S °(l-/

+ 2 C"' ^^- ^^- (10)
1 < S < W *' (V-S)\ (fl-l)\
1< / < M
i+/ <» + p

(v=l,2,...,ß; p= 1,2, ...,«).

Proof. Let y E [O, 5] be fixed. We can write the following Taylor's
formulae

*,.„,« (*,,)=£ ^^/,£-^„(0,,) +

08 - 1)!

and

a ^a-M

rx ( X _ f c - y 3 - i
+ / ,0 , M ^/.ftatt,y)^ OD
^ o

^r^.A« (°.j')=Mf1 -^z^r ¿c~MjDr'2/.ft« (°.°)+

+/ ^(tt-^)! ' ^X""^fta (°» ̂  d«- <1 2)

Substituting (12) into (11) and using notation (1) and the assumption
u G J#, we easily conclude that the first of equalities (9) holds good with
ov = ZfiVilt (0, 0). The proof of the second one is analogous. Finally,
relation (10) follows from (9) and (4).

ô
(*) As usual, we set s ar = 0 for 5 <. 7.

r=7
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Remark 2.-If zftßia (/ = 1, 2, .... k; ß = l, 2, ..„^ ; a= l, 2, ...,r2)
are given by formula (9), then we shall write (cp. (1 ))

Z(X,y) = R[V(.), «/(.), *,>>]. (13)

Now, let us consider the following system of integro-functionalequations

vi,a(x,y) = ej¡a(x, R[V(.), W (.), x, fa (x)], B/[x,/a (x)])+

ry
+ vi,oi-i (x,r))dri; (j= 1,2, ...,k; o¿ = 2,3, ...,r2)Jfa (x)

o,M (x,y) = eLl (x, R (V (.), W (.), Je, /, (x)], W [x, f , (*)]) +

+ 1 dt?| ^"^y P/ + i.ra(€.1?)^ +

'I
+ s

v

h í dT?í

-^ /1 (x) -^ O

yi-» r r* r" ^-a/^-1
:-^^U,,/l i^or'1'-'<0·<')*+

+
í*î,^'//iw^4 »-'.î.-.*-»

(14)

^i (JC,^) = eA;1 (x, A[F( . ) , n'C), x,/, (x)], W [x, f, (x)]) +

+ T F (x, 77, /Z[F(.) , H/C), x, T?], K(X,TÍ), W/(x, 17))^;
J/l (*)

w,,, (x,^)=gA/s (y, A[F(.) , ^(.), ^ (y), y], KÍAp (y), y]) +

+ í wj.e-íG.yWt; (J= 1,2, ...,*; ß = 2, 3, ....n)
J"p (y)

w/.i (x,^=5,,, (y, i?[F(.), «/(.), Ai (y), >»], F [A! Cv), y]) +

f f (y-T^-l
+ dM fr _ i v w/*^i ^^^ +

-'/»l (̂ ) - 'O ^2 U'

'2 v»-2 -M
+ 2

M - l (^-¿»ÏV^ w

r rx rç (g_ 0y i -» *
•U d*l Í~Vy/+1-(a'0)í/a +
• ^J f,, (y) J O V I !-»•
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+ â4vf M ^4 f f = i ' 2 ' • • • •*- i )

w*,i (*,>0=At,i O, /?[F(.), W(.), ¿ï (y), j/], F [Ai (y), y]) +

•X+ | F«, j;, Ä[F(.) , W(.), É, y], F(£,7), W(l,jO)d|.
00

Lemma 2.— If w is a solution of the (P)-problem, then F and W are
continuous and system (14) is satisfied.

Proof. — If follows from the present assumptions, formulae (1) and
Lemma 1 that V and W are continuous and relation (13) holds good. Let us
observe (cp. (1) and (2)) that the following formula

DyVj,a =

Vj,a-i for /= 1, 2, ...,k; a = 2, 3, ...,r2

F for / = k; a= I (15)
zj + i,^,^ for /= 1,2,...,k - 1; a= 1

is valid. Integrating (15) over [fa (x), y] and using conditions (3), equation
(2) or formula (9), respectively, we get the first three of equations (14). The
derivation of the remaining three of these equations is analogous.

Lemma 3.— If relation (13) holds true, where the system (F, W) isa
continuous solution of system (14), then Zi,ri,n is a solution of the
problem (P).

Proof.— It easily follows from our assumptions that

Lz. = /z / + i.n.'2 f o r / = 1,2, ...,/:-!
LZ>'r^ \F f o r / = *. (16)

As a consequence of (16) we get

U^Z^.r^ =Zf,ri,r2 (17)

(j = 1,2, ...,k). Moreover, using (9), (14) and (17), we have

D? D?-aV-1 zl>ri,r2 =D? D?-«?!.^ =

= £>?'" Vf,,* =»,;<* (18)



A NONLINEAR BOUNDARY VALUE PROBLEM 241

0=1,2,. . . ,*; a=l ,2 , . . . , r a ) .
In a similar way we get the relations

DÏ-'DpL'-iz^n^wi.p (19)x ^y

and

D? "P D? ~a II - ' z j, ri, ,2 = Z/, p> a (20)

0=1,2,. . . ,*; a= 1,2, ...,r?; 0 = 1 , 2 , ..../-O.
It follows from equalities (18)-(20) that the function ziiri,r2 belongs

to Jfc. Evidently,by (16) and (17) the said function satisfies system (2) in iî.
Finally, one can easily deduce from (9), (10), (14), (19) and (20) that con-
ditions (3) and (4) are satisfied. Thus, the proof of Lemma 3 is completed.

As a result of Lemmas 2 and 3 we can formulate the following

Proposition 1.— There is one-to-one correspondence between the solu-
tions u of the problem (P) and continuous solutions (V, W) of system (14).

4. In this section we will prove the existence of a continuous solution
of system (14) and hence (cp. Proposition 1) of a solution of problem (P).
To this end we will apply the well known Schauder fixed point-theorem.

Let A be the Banach space of all systems 0 = (V, W) of continuous
functions(*) with the norm

11011 = max [ max sup |u/ a (x,y)\, max sup |w,- « ( x , y ) \ ] . (21)
i< / < f c n i < / < f c n

1 < a« ri I « j 3 < r i

We consider the set % of all points 0 EA that are equicontinuous and
satisfy the condition

II0IKP (22)

where p is a parameter to be suitably chosen in the sequel (cp. p. 9).
Evidently, % is a closed convex and compact set.
In view of system (14), we map the set 1$ by the following transfor-

mation

í = W (23)

(<p = (V, W)£^; 0 = (F,WO, where V={vjiCl}; W={wiiß}) with

v,;a(x,y) = eiia(x, R[V(.), W (.), x, f a ( x ) ] , W(x, fa (*)]) +

(*) K= {UAO£}; W = {w/((J}, where/=1,2, ...,fc; a= 1, 2, ...,r2; 0=1,2,...^!.
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J f n

rV

+ 1 üy.a-i (*, 17)*?; (j = 1, 2, ..., k- ot = 2, 3, ...,r2)
'fa W

w/.i (*,;F) = e/,i (x, A [F C), W(.), x, /, (x)], W [x, fr (*)]) +

+f <*[ (r^C 5*^a (*.*)*+
J ft (x) Jo (ri - 1)!

r
+

y

"4 **•'"" r r r (r?-a/2-1 ,
2 < dr\ — '- wy + i „ (O, ff)<ícr +
-i Ci-»')! U f t tó J„ C-2-1) ! ' ' ' J

'/i W ^ o

^y

'A w C'-«'
+.l^'£„^5i4 ff-'-2--*-^

w*, i (^,7) = efc) i (x, R [7(.), H^ (O, x, A (x)], H/ [x, A (x)]) +

ír-y
-+l F(x,n,R[V(.), W(.\x,r)], V (x,it\ W (x,ripari;

/1 (x)

(24)

w / f ( l (x,y)=g,ift (y, R[V(.}, W (.), hß (y), y], V[hß (y), y\) +

{
•J ha

+ wi.ß-i(t,y)dli; ( /=1 ,2 , ...,*; 0 = 2, 3, ..../-O
^(y)

w/.i (x,y) = g / f l (y, R[V(.), W(.), h, (y), y ] , V [h, (y), y } } +

(y _ «/2

+ / ^1 (.2 i)! S/^fci?)^

^ - v-,-1

,f ,;
J ftj Cv) -'o

»•* /2 -M r rx rç

' " - t f ra-M)!U h l W ^J 0

+A«;iJIw^5i4 ^1'2-*-»

+ ..?. 7T-^rU ^l ^fi), ^i.M».o)^ +
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w*,i (x,y) = gkil (y,R[V(.), &/(.), h, < y ) , y ] , F[¿i 00, y]) +

-/;+ | F(tty,RlV(.), W(.), t,y], V(t,y), W(t,y))dt,
(y)

where C/*1 are given by formula (10) with v/ j M and WfiS replaced by
v^ft and WjtS, respectively (and/ by /4- 1).

We will find sufficient conditions for the inclusion T (%) C %.
Let us observe that by formulae (9) and (22), and Assumptions I-III,

the following inequalities

\F(x,y, R[V(.), W(.), x, y], V(x,y), W <x,y))\<Ml (25)

((x.jOefí) and

I*,,« (x,R[V(.), W(.), x, fa (x)}, W(x, fa (*)])! <Afa

\ g i , ß < y , R l V ( - ) , W ( . ) , h ß < y ) , y ] , V [ h ß < y ) , y ] ) \ < M 2

((x,y) G Í2; / = 1 , 2 , ...,k; ot= 1,2, ...,r2; ß= 1,2, ...,/-i) are valid, where

M1 = d [Ki + K2 (1 + (ip/* ) + A^p'- ]
7W2 = d [K3 + K4 (1 + (ÍP/. ) 4- ATÍP'- ] ( *

(A = max (A, £)) with Q being a positive constant independent of p.
By using (24)-(26) one can prove that

\v)ia(x,y)\<C2(Ã + Mt+ÃMi)
\w,iß(x,y)\<C2(A + M2+AM1), '

where C2 is a constant of the same type as Q above.
It is easily seen that by Assumptions I-III, the construction of the set

% and formula (24), the functions 0 = T§ (0 e^) are equicontinuous.
Thus, bearing in mind afore-obtained results, we can conclude that

T (%) C % if the following inequality

C{1 +AKi +^3 +(AKt +AT 4 ) [1 +(Ip/*] + (^ +.S:;)p'·*}<p (29)

is satisfied, where C is a positive constant independent of p.
It is clear that (29) holds good if the parameter p in (22) is chosen

sufficiently large.
One can also prove that the following lemma is valid

Lemma 4.- The transformation (23) is continuous.

Thus, all assumptions of Schauder's fixed point theorem are satisfied
and using this theorem we can conclude that there is a fixed point 0* =
= (V*, W*) e % of transformation (23), whence (V*, W*} is a continuous
solution of system (14). As a consequence (cp. Lemma 3), we can assert that
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the corresponding function zf¡n>n (cp. formula (9)) is a solution of the
problem (P) and so the following theorem is established.

Theorem 1.— If Assumptions I-III are satisfied, then problem (P) has a
solution.

Remark 3.— Let us note that we have proved the globalexistence of a
solution of problem (P), and hence also of problem (ß) of paper [7], for
arbitrary values of Kv , K'2 , K'4 0> = 1, 2, 3, 4) and without any additional
conditions on the curves considered (cp. [7], Theorems 1-3 and Remark 4).

5. This section is devoted to the existence of a unique solution of
problem (P).

We retain Assumption I and replace Assumptions II and III by the
following ones:

IF. The function F: &> x 1RK -+ IR" is continuous and satisfies the
Lipschitz condition

\F(x,y,Z,H1,H*)-F(x,y,Z,H1,H2)\<

<*5$o+*s?i , (30)

where K5 and K'5 are positive constants, and ^0
 and V'Q are

given by

? o = S "í 2 l$>(,,a-i,,*.« I (31)
/ = i a = i 0 = i

and

t ¿ = S "Ì | T ? / a - f i / a l + 2 S | nf ß - í?? ß \, (32)
/ = i a = i '' / = i ß=i

respectively (particular symbols are understood analogously as the
corresponding symbols in (6), (7)).

HI'. The functions cy,a: [0,A] x JR«-*»'* ^ IR" and giiß: [0,5] x

x R«-*'»·i -*]R» ( /= l , 2 , . . . , f c ; a= l , 2 , . . . , / - 2 ; /5=1 ,2 , . . . , ^ )
are continuous and satisfy the Lipschitz conditions

\ej>a(X,Z,H*)-ejia(X,e,fr)\<K6'$0 +K'6%{;

\giiß(y,Z,Hi)-gLß(y,Z,Hl)\<K6%0+K'6%'2,
 (

,N

where K6 and ̂  are positive constants and ̂ y (i> = 1, 2) denote
/\

the expression ^¿ with the first or second term, respectively,
being omitted.
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Remark 4.— Let us denote

K* = max(sup \F(x,y, 0, 0, 0)i,
L fi

max max sup le/,a (x, 0, 0)1,
1 < /< fe 1 < a< r2 [Q,A]

max max sup lg/,0 (y, 0, Q)\\. (34)
! < ; < f c K / 3 4 Í - J [0,B] J

It follows from Assumptions IF and III' that

\F(x,y,S,H1,lP)\<K.+K5
<ié<í.+K'sV0.

\ei,a(x,'S>H2)\<K^ + K^^ + K'^{*- (35)
|g/,fl (y, S,H1 ) | < tf. + K6 ?o* + *6 ̂ á*

where ^0» and ?¿, (v - O, 1,2) denote the expressions ^0 and ^¿ (v =
= 0, l, 2), respectively, with r» = l.

Now we will apply the Banach fixed point theorem. Let us consider the
set fg (cp. p. 7) and the transformation T (cp. (23)). Evidently, % can
be treated as a complete metric space with the distance d (0 t, 0) =
=||0i — 02 II • Moreover, it follows from the results obtained in Section 4 and
from Remark 4 that, under Assumptions I, II' and III', the inclusion
T (^) C *% holds good if the following inequality.

C' [(l+A)K*+(K5 +K'S +*6)(1 +Ap) + K'6p]<p (36)

is valid, where C' is a positive constant independent of p.
It is clear that (36) holds good if p is properly chosen and if the

Lipschitz coefficients K5, K'5, K6, or the Lipschitz coefficient K'6 and the
value of Ã (cp. p. 9), are sufficiently small.

Thus, in order to apply the Banach fixed point theorem we have only
to prove that the transformation T is a contraction.

Let us observe that by formulae (9), (10), (30) and (33) we have

\F(x, y, R [V, (.), Wí (.), x, y ] , V1 (x, y), W, (x, y)) -
-F(x, y, R [V2 (.), H/a (•), x, y ] , V2 (x,y), W2 (x, j))|<

<C3(AK5 +^)d(0!,02), (37)

|e/f « (Jf, A [n (.), H/t (.), *, /a (x)], B/i [x, /« (x)]) -

- g/,a (x, R [Vt (.), H/2 (.), x, /a (x)], PV2 [x, /a (x)]) | <

<C4(^6+^)i/(01 ,02) (38)
and
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tei.ßV, R [Vi (O, Wi (.), he (y), y], Ví (hß (y), y}) -
-gt,e<y,R [V2 (.), W2 (.), hf,(y), y], V2 (hß (y), y})\<

<C*(ÃK6+K'6)d(<l>í,<l>2) (39)

(& = (VV, Wv}£<%; v= 1,2), where Cv (i> = 3,4) are positive constants
independent of 4>\ and fa •

Using (37H39) and (24), one can prove that

\Vi,a(x,y)-vfia(x,y)\<Cs (Ã (K5 + K6 + K's) + K6] d (^ , 02)

K Í ( J (^ ,^) -W/ , P ( JC,^) |<CS [Â(KS + Kt+K's) + K6]d(<l>í,<l>2)

with Cs being a constant of the same type as C3 and C4 above, and as a
consequence of (40) we can assert that the transformation T is a contraction
provided that

C"[A(KS+K6+K'S) + K'6]<1, (41)

where C" is a positive constant independent of 0t and 02 .
Evidently, (41) is satisfied if the Lipschitz coefficientsK5 ,K'5,K6 and

K'6 , or the Lipschitz coefficient K'6 and the value of Ã, are sufficiently small.
Let us assume that inequalities (36) and (41) are satisfied. It follows

from the Banach fixed point theorem that the transformation T (cp. (23))
has a unique fixed point 0° €E Ü?, whence, and by (14) and Lemma 3, we
can assert that there is a unique solution of problem (P).

As a consequence, we can formulate the following

Theorem 2.— If Assumptions I, II' and III' are satisfied and if the
inequalities (36) and (41) hold good, then there exists a unique solution of
problem (P).
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