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ABSTRACT

This paper studies a target-based procedure to rank lot-
teries that is normatively and observationally equivalent
to the expected utility model. In view of this equivalence,
the traditional utility-based language for decision making
may be substituted with an alternative target-based lan-
guage. Switching language may have significant mode-
lling consequences. To exemplify, we contrast the util-
ity-based viewpoint of prospect theory against the target-
based viewpoint and provide an explanation of Allais'
paradox based on context dependence instead of dis-
torted probabilities.

1. INTRODUCTION

Suppose that a greedy agent must rank n monetary lot-
teries X], X2, ..., Xn. The agent does not know how to
compare two lotteries, so he must use some ranking pro-
cedure. Here is a possible one. The agent selects a target t
and ranks a lottery X by the probability P(X ^ f) that it
meets the target; see Manski (1988). However, the agent
may not know for sure which target he should select.
Then he could replace the sure target t with a random
variable T representing his uncertain target and rank a
lottery X by the probability P(X ̂  T) that it meets his
uncertain target. We call this the target-based procedure.

Another possible ranking procedure is based on the ex-
pected utility model. The agent selects a utility function
U over money and ranks a lottery X by its expected utility
EU(X). We call this the utility-based procedure. For fu-

ture use, note that the utility function U is unique up to
increasing affine transformations: we say for short that U
is cardinal.

A natural question is which one of the two procedures
is better. The answer, however, depends on what we
mean by «better». One possible approach is to take a nor-
mative point of view and interpret «better» as «more ra-
tional». Another approach is to consider revealed prefer-
ences and interpret «better» as «closer to observed choice
behavior». Thus, we may ask two different questions.

Which one of the two procedures is more rational?
Which one is closer to the observed choice behavior?
Both questions have the same surprising answer: neither
one —they are equivalent! If an agent applies the target-
based procedure, he behaves as if he is maximizing the
expected value of a utility function. Vice versa, if he fol-
lows the utility-based procedure, he acts as if he is maxi-
mizing the probability to meet an uncertain target.

We show below why the two procedures are both math-
ematically and observationally equivalent. For the mo-
ment, just note that this implies that any axiomatic foun-
dation for the utility-based procedure works as well for
the target-based procedure. Analogously, any choice be-
havior which can be rationalized by the expected utility
model fits equally well the target-based model.

These two equivalence statements would seem to
leave no room for interesting questions. There are two
different procedures, but only one basic model for deci-
sion making.

1 I am grateful to Robert Bordley and Brio Castagnoli for many insights. I wish to thank Stefano DellaVigna, David Laibson, Cristina Molinari
and seminar audiences at the universities of Harvard, Illinois (Urbana-Champaign), North Carolina (Chapel Hill), Paris I (Sorbonne) and Purdue for
helpful comments. Most of this paper was written while I was enjoying the exquisite hospitality of the Department of Economics at Purdue
University.
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Yet, there is one important difference that we should
explore. Many, if not all, nonexpected utility models
have been suggested as ways to amend the expected util-
ity model against a mounting contrary empirical evi-
dence. Most of these models maintained the notion of a
cardinal utility function or, more generally, were framed
in a utility-based language. Instead, the target-based
model assumes no comprehension of cardinal utilities: it
is phrased in a language that requires only an understand-
ing of probabilities.

The target-based approach and the utility-based ap-
proach invoke two different languages. Which languages
is chosen to amend the basic model (be it expected utility
or the equivalent target-based procedure) may affect the
descriptive power and the plausibility of our models.

To exemplify, consider the prospect theory put forth in
Kahneman and Tversky (1979), which is still one of the
best and most complete descriptive models for decision
making under risk. Prospect theory was built in three
steps, heavily inspired by the expected utility model.
First, Kahneman and Tversky amassed a tremendous
amount of empirical evidence and compared it with the
predictions of the expected utility model. A good chunk
of the evidence was compatible, while the rest led to the
so called choice anomalies. Second, they fit the compat-
ible evidence coming up with a characteristic shape for
the cardinal utility function. Third, they modified some
pieces of the expected utility model to fit the choice
anomalies, ending up with a nonexpected utility model
based on the distorted probabilities suggested first in Ed-
wards (1955, 1962).

To use an analogy, Kahneman and Tversky's prospect
theory did for expected utility what Ptolemy's epicycles
did for the geocentric theory. But what would happen if
prospect theory would be worked out using a target-
based language? Maybe we might have an explanation
for the choice anomalies more convincing than Kahne-
man and Tversky's story about probability distortions.
And if this were the case, the target-based language
should be deemed descriptively richer than the utility-
based language.

This paper studies whether the target-based language
can stake the claim of being descriptivley richer than the
utility-based language. We test its power against Kahne-
man and Tversky's prospect theory. We are well aware
that there are many competitors in the race to offer better
descriptive models, including the cumulative prospect
theory later developed in Kahneman and Tversky (1992).
However, prospect theory has a few advantages that
make it the ideal benchmark: it is simple to explain, it is
more widely known and it misses none of the essential

elements that should enter into a descriptive theory of
decision making.

The rest of the paper is organized as follows. Section 2
establishes the equivalence of the target-based model and
of the expected utility model. Section 3 summarizes
prospect theory and discusses the key descriptive as-
sumptions that it imposes on the utility function. Section
4 applies the target-based language to provide an expla-
nation for these assumptions. Section 5 reviews the
choice anomalies and how prospect theory deals with
them. Section 6 applies the target-based language to this
experimental evidence and provides an alternative de-
scriptive theory. Section 7 compares the advantages of
the target-based language versus the advantages of the
utility-based language and draws some conclusions.

2. TWO EQUIVALENT PROCEDURES

The purpose of this section is to establish the equival-
ence of the target-based procedure and the utility-based
procedure. For simplicity we discuss only the case of de-
cision making under risk, where the outcomes are monet-
ary and the probability distributions are already known to
the agent. See Castagnoli and LiCalzi (1996) for arbit-
rary prizes under risk and Bordley and LiCalzi (1999) for
arbitrary prizes under uncertainty in the setting of Sav-
age's (1954) theory of subjective expected utility.

Some formalities will be useful. Let Y c: R be a
nonempty set of monetary outcomes and let Â be the set
of all lotteries on Y. The set Y is completely preordered
by the «greater than» preference relation ^, which rep-
resents a greedy agent. If X is a lottery in Â and F is its
cumulative distribution function (c.d.f.), we write X ~ F.
Given an outcome y in Y, we denote by y * the degenerate
lottery in ¿ yielding y for sure.

We show that the target-based procedure and the util-
ity-based procedure are equivalent by proving that they
are equivalent to a third (apparently) more general
ranking procedure; see Churchman and Ackoff (1954). A
ranking procedure induces a preference relation > on ̂ .
There are many ways to describe a ranking procedure,
but the simplest one is to define a value function: v:¿¿->
U and rank X{ > X2 if and only if v(X,) ̂  v(X2). Any
value function v represents a ranking procedure over ¿.
We assume that the ranking given by v is consistent with
the greedy preference relation ^ on Y: y, ^ y2 if and only
ifv(y*)^v(yj) .

We consider the class of ranking procedures asso-
ciated with value functions that are (weakly continuous
and) linear in the probability distributions; that is, given
X ~ F, the value function v can be written as

v(X) = I W(x) dF(x) (1)
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where W(x) : Y -> U is a real-valued, bounded, continu-
ous, increasing, and cardinal weight function. As it is
well-known, the independence axiom and the continuity
of > (in the weak topology) are a necessary and suf-
ficient condition for the existence of a linear ranking
procedure; see for instance Theorem 3 in Grandmont
(1972). This characterization result, however, is con-
spicuously silent about how we should interpret the
weight function W.

To provide an interpretation, we need to turn to a lan-
guage. Let us bring in the two procedures described in
the introduction. Following the target-based model, the
agent must first subjectively assess the c.d.f. P(x > 7) of
his uncertain target T, which we assume stochastically
independent of the lotteries in ̂ . Then, he evaluates a
lottery X ~ F using the ranking procedure associated with
the value function

v, (X) = P(X^T) = J, P(x ̂  T) dF(x).

This ranking procedure coincides with the class in' (1)
because, since W(x) is bounded and cardinal, we can nor-
malize its range to [0, 1] and let P(x^T) = W(x). The
target-based procedure is a linear ranking procedure,
where the weight function W(x) is interpreted as the c.d.f.
P(x ^ T) of an uncertain target T.

Following the expected utility model, the agent must
first subjectively assess his cardinal utility function U : Y
—» IR. Then, he evaluates a lottery X ~ F using the
ranking procedure associated with the value function

2(X) = EU(X) = I U(x) dF(x) (2)

Again, if we let U(x) - W(x), this ranking procedure co-
incides with the class in (1). The expected utility pro-
cedure is also a linear ranking procedure, where the
weight function W(x) is interpreted as the cardinal utility
function U(x).

Each of the two interpretations needs some exogenous
component, which is left for the agent to be subjectively
assessed. The target-based language requières a stochas-
tically independent uncertain target T. The utility-based
language requires a utility function that is unique up to
affine increasing transformations. In our opinion, neither
requirement can claim to be more plausible than the
other. And, in any case, both conform to (1); therefore,
the two procedures share the same axiomatic foundations
and are observationally equivalent.

How do we move from one procedure to the other? We
can bypass the weight function W(x) and check directly
when v, and v2 define the same ranking. After a normal-
ization, the two equalities P(x ̂  T) = W(x) = U(x) must
hold. Hence, the two procedures are equivalent if we let

P(x ^ T) = U(x).

To put it differently, the equivalence follows if we think
of the «old» cardinal utility of x as the probability that the
uncertain target Tis not greater than x: that is, if we inter-
pret ¿7(100) as the probability that the agent's target is
not greater than 100 euros, rather than as the cardinal
utility of 100 euros for the agent.

This somewhat suprising equation is the major piece
of the «dictionary» to translate the target-based language
into the utility-based language and vice versa. We use
this translating device throughout the rest of the paper;
see Berhold (1973), Borch (1968) or Castagnoli and
LiCalzi (1996) for a few (mutually independent) excur-
sions on this theme.

3. PROSPECT THEORY AND THE UTILITY
FUNCTION

The major purpose of this paper is to compare the po-
tential descriptive power of a target-based language ver-
sus the sucesses of the utility-based language. To provide
material for this comparison, this section and Section 5
review the major propositions of the prospect theory de-
veloped by Kahneman and Tversky (1979) to account for
the empirical evidence against the expected utility
model. For a broader perspective on prospect theory and
behavioral decision theory see Thaler (1987).

Prospect theory deals with decision making under risk,
where the probability distributions for the lotteries are
known to the agent. The theory is developed only for
monetary lotteries with finite support. To ensure maxi-
mum consistency, we restrict attention to finite lotteries
over money and, in this section, we strictly adhere to a
utility-based language.

Prospect theory has four major assumptions. The first
one is that there is a preliminary editing phase, during
which outcomes and probabilities of the lotteries may be
transformed. Typical phenomena that may occur during
this phase are the coding of outcomes as gains and losses,
the segregation of riskless components or the rounding of
probabilities. The editing phase is crucial to understand-
ing how the agent perceives a lottery. Much of what goes
on in a ranking task probably takes place at this stage.
However, since the editing phase is carried out before
any cardinal utility function enters the picture, we do not
need to examine it in greater detail.

The other three major assumptions are (i) there exists a
utility function U over outcomes; (ii) there exists a prob-
ability distorsion function n which describes how the
agent perceives (or weighs) the known probabilities:
more precisely, if a lottery X has the probability distribu-
tion p, the probability p¡ of an outcome x¡ occurring is
perceived as 7t(p;); (iii) there exists a ranking procedure
which combines utilities and (distorted) probabilities.
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Prospect theory assumes that the ranking procedure is
linear in the distorted probabilités. In other words, the
ranking procedure is generated by the value function

v(X) = X U(x)n[p(x)] (3)

which is linear in n but not in p. Therefore, prospect the-
ory postulates a model which in general is not linear in
the known probabilities. Given the similarity of (3) to a
linear ranking procedure, it should be apparent how little
prospect theory tries to part away from the expected util-
ity model.

Based on the assumption that the ranking procedure is
linear in the distorted probabilities, Kahneman and
Tversky (1979) examines the empirical evidence and de-
duces what properties U and n should satisfy to make (3)
compatible with it. In the rest of this section, we consider
what prospect theory has to say about U.

The utility function

Prospect theory summarizes the empirical evidence
about the utility function U in three effects that have a
clear psychological interpretation:

(i) Lack of asset integration: people are concerned
about changes with respect to some reference
point, rather than about their final state of
wealth.

(ii) Reflection effect: the marginal impact of both
positive changes (gains) and negative changes
(losses) decreases with their magnitudes.

(iii) Loss aversion: losses loom larger than gains of
equivalent amount.

Both Kahneman and Tversky (1979) and the subse-
quent literature have qualified these propreties in many
ways. In particular, the empirical evidence which sup-
ports them is not always as clear-cut as one might wish.
Overall, however, these properties are a robust summary
of many independent experiments.

The following proposition states how they can be for-
malized and made to fit both the expected utility model
in (2) and the prospect theory of (3). Given a reference
point r, we call gains and losses those outcomes that are
respectively coded as positive or negative changes (with
respect to r).

Proposition 1. Given either the expected utility
model or the prospect theory, the following three charac-
terizations hold.

(i) Lack of asset integration holds if and only if the
utility function U is defined over changes with
respect to some reference point.

(ii) The reflection effect holds if and only if U is
concave over gains and convex over losses.

(iii) Loss aversion holds if and only if U is steeper
over losses than over gains.

This characterization is a descriptive result, stating
which properties of U must be assumed to make (2) or (3)
compatible with the experimental findings. However, the
proposition does not tell us why the three effects occur.
What brings about lack of asset integration, the reflection
effect and loss aversion is accounted for but not ex-
plained.

4. A TARGET-BASED EXPLANATION

We can apply the target-based language to offer an ex-
planation for all the three effects described in the previ-
ous section. Our purpose is not to derive an alternative
mathematical theorem: Proposition 1 accounts for the ex-
perimental evidence in an elegant and simple way. Our
intent is to explain what may bring about precisely the
propreties described by Proposition 1. We already know
the «what?»; this section looks at the «why?».

We begin with the explanation for the lack of asset
integration suggested by the target-based language. Sup-
pose for a moment that the agent has a known target.
When he evaluates an outcome, there is a natural sense in
which this is good or bad: it meets the target or it does
not. The good outcomes are coded as gains and the bad
outcomes are coded as losses. When the target is uncer-
tain, the mental process of pitting an outcome against an
uncertain target is still dichotomous: if an outcome repre-
sents a change that improves his chances of meeting the
target, the agent codes it as a gain; otherwise, as a loss.
Proposition l.(i) is the mathematical representation of a
classification task.

We now move to the reflection effect. Assume for sim-
plicity that the uncertain target T has a probability den-
sity T(X) and consider which kind of probability density
for the target would generate the reflection effect. The
reflection effect states that P(x ^T) = U(x) is concave
over gains and convex over losses. Since T(JC) is the de-
rivative of the c.d.f. P(x ~^T)- U(x), the probability den-
sity would have to be decreasing over the domain of
gains and increasing over the domain of losses; that is, r
should be unimodal around the reference point. See Fig-
ure 1, where the modal target is coded as the reference
point (conventionally, the 0 outcome).

Hence, the reflection effect follows from a subjective
assessment that there is one modal outcome for the un-
certain target (which acts as a reference point) and that
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Figure 1. A unimodal probability density for the target.

the probability of the target being different from the ref-
erence point is decreasing as we move away from it.
Proposition l.(ii) is the mathematical representation of a
probability judgement.

As Kahneman and Tversky (1979) diffusely point out,
the reference point used to code outcomes may differ
from the status quo or may shift over time. In the target-
based language, we equate the reference point with the
modal outcome of the distribution. Therefore, the mode
of the uncertain target may differ from the status quo or
may shift over time. This is plausible and consistent with
the assumption that the target is subjectively assessed.
Depending on the structure of the problem, we may ex-
pect that the most likely target is different from the cur-
rent outcome. And as we obtain more information, we
may update the distribution of the target so that the mo-
dal outcome would shift over time.

Incidentally, it is worthwhile to pause and note which
kind of probability distribution for the target would gen-
erate risk averse behavior over all lotteries. Since risk
aversion follows from a concave U(x) = P(x ̂  7), this
implies that the density function i should be decreasing;
see Figure 2. Hence, risk aversion follows from a conser-
vative evaluation which «ascribes high probability to the
uncertain» target being a low outcome. This offers an
explanation for which psychological factors may lay be-
hind the characterization of risk aversion as concavity of
the cardinal utility function.

The third and last effect to examine is loss aversion
under risk, which states that P(x ̂  7) = U(x) has a higher

Figura 2. A conservative assessment of the target.

derivative over losses than over gains of equivalent
amount. This property has an ambiguous interpretation,
because Kahneman and Tversky (1979) does not specify
the admissible range of gains and losses. If this range is
IR, loss aversion implies U'(x) < U'(-x) for all x > 0. On
the other hand, if losses are bounded below by —b, it suf-
fices that U'(x) < U'(-x) for all x in (0, b). The picture on
p. 279 of Kahneman and Tversky (1979) and the litera-
ture suggest the second interpretation. Although the tar-
get-based language may accommodate either case, we
also adopt this second interpretation because it is more
ralistic: losses are usually bounded below, at worst by
bankruptcy.

Given this interpretation, since t(x) is the derivative of
the c.d.f. P(x ^ 7) = U(x), the reflection effect requires
T(X) < T(-JC) over some (possibly large) interval (0, ¿>) of
the reference point. This implies that the probability den-
sity for the target should be asymmetric around the mo-
dal outcome; see Figure 3 for two examples.

Loss aversion follows from a subjective judgement
that expects targets just below the reference point to be
more likely than those just above it. Proposition l.(iii) is
the mathematical representation of a prudential attitude
in the evaluation of the uncertain target.

There is a variety of distributions that may be consist-
ent with this prudential attitude. The picture on the left of
Figure 3 shows that the probability of the target being
very high must not necessarily be small: for example, a
college student may sets her reference point equal to her
low current endowment, while still nourishing great ex-
pectations about herself. On the other hand, the picture
on the right shows that the probability of the target being
high can be small: for example, an established banker
may feel that there is no much room left to improve on
his reference point. These two cases would exhibit mark-
edly different values for the slopes of U(x) in a neighbor-
hood of 0.

In spite of its intuitive plausibility, risk seeking behav-
ior over losses has received less empirical support than
the other two effects; for instance, Bernstein et alii
(1997) do not find any evidence of it. The variety of com-
patible distributions for the target suggests that some ex-
periments may have failed to recognize it only because
their design could not take into account differences
across people in the assessments of their targets. It is to
be hoped that this target-based conjecture will be put un-
der experimental testing.

5. CHOICE ANOMALIES AND DECISION
WEIGHTS

In this section we go back to prospect theory and to a
utility-based language. Whichever their explanation may



444 Marco LiCalzi Rev.R.Acad.Cienc.Exact.Fis.Nat. (Esp), 1999; 93

r-,«

Figure 3. Two asymmetric assessments of the target.

Kahneman and Tversky (1979). When offered to choose
between the two lotteries

A =
4.000 0,80

0 0,20
and B = {3.000 1, (6)

most people (80 %) pick B. However, when offered to
choose between the two lotteries

C =
'4.000 0,20
0 0,80

andZ) =
3.000 0,25
0 0,75

(7)

be, the mathematical properties of the utility function
collected in Proposition 1 do not suffice to account for all
the empirical evidence. Kahneman and Tversky (1979)
report a few choice anomalies that invalidate the ex-
pected utility model in (2), but may be accommodated by
introducing the distorted probabilities of the nonlinear
ranking procedure in (3). To convey the flavor of their
argument, it will be enough to look at four experiments
chosen from the rich corpus of choice anomalies.

most people (65 %) pick C. Again, the two modal choices
together run against the expected utility model.

In fact, the certainty effect is so robust that it persists
even in a setting where lottery B offers only a very likely
gain, but not the certainty of it. For example, in Problems
7 and 8 in Kahneman and Tversky (1979), the usual pat-
tern of B (86 % of choices) and C (73 % of choices) is
replicated when people are respectively offered a choice
between

Allais' paradox

The first experiment is the well-known Allais' para-
dox. We recall it in one of its versions, dubbed as Prob-
lems 1 and 2 in Kahneman and Tversky (1979). When
offered to choose between the two lotteries

0,33
0,66
0,01

and B ={2.400 1, (4)

most people (82 %) pick B. However, when offered to
choose between the two lotteries

(2.500 0,33 (2.400 0,34
Ho 0,67 a"d Ho 0,66 (5)

most people (83 %) pick C. These two modal choices to-
gether are incompatible with the expected utility model.

Allais' paradox has stimulated many nonexpected util-
ity models that can account for this choice anomaly; see
for instance Machina (1982) and Gul (1991). Most of
these models share the intuition that people seem to give
a disproportionate weight to lottery B, because it offers a
sure gain of 2.400. For this reason, this choice anomaly is
also known as the certainty effect.

The certainty effect occurs even with two-outcome
gambles. For instance, consider Problems 3 and 4 in

(6.000 0,45 (3.000 0,90
Ho 0,55 and Ho 0,10

(8)

and between

C =
6.000 0,01
0 0,999 and D=10

3.000 0,02
0,998

(9)

This led to an empirical generalization of the Allais'
paradox known as the common ratio effect: suppose that
a lottery offering y with probability q (and nothing other-
wise) is deemed indifferent to another lottery offering
x < y with probability p > q (and nothing otherwise);
then, for 0 < r < 1, a third lottery offering y with prob-
ability qr is preferred to a fourth lottery offering x with
probability pr.

The reverse Allais' paradox

A puzzling companion to the traditional Allais' paradox
is the reverse Allais' pradox, which occurs when we
change the sign of all the outcomes in the original formu-
lation. For instance, take the two pairs of lotteries in (6)
and (7) and change the sign of all the outcomes. These
are Problems 3' and 4' in Kahneman and Tversky (1979).

Now, when offered to choose between the two lotteries

A' =
-4.000 0,80

0 0,20
and B' = {-3.000 1 (10)
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most people (92%) pick A'. Instead, when offered to
choose between the two lotteries

„ f-4.000 0,20 J , f-3.000 0,25 / l i x
C = J O 0,80 and D= |0 0,75 (11)

most people (58 %) pick D'. Preferences are reversed
when we transform gains into losses. This is remarkable
because we rarely observe a paired choice of A and D
when the Allais' paradox is formulated over gains. In the
words of Kahneman and Tversky (1979), «certainty in-
creases the aversiveness of losses as well as the desidera-
bility of gains».

Distorted probabilities

None of the four choice anomalies mentioned is com-
patible with a linear ranking procedure like the expected
utility model. If we want a model that can account for
them, we need to alter some feature of the linear ranking
procedure. Kahneman and Tversky (1979) followed Ed-
wards (1955, 1962) and took the route of altering the
probabilities with a probability distorsion function n.
This function maps the known probability p into a differ-
ent value n(p), still in [0, 1]. The distorted probabilities,
called «decision weights», may not obey the probability
axioms and should not be interpreted as alternate subjec-
tive probabilities.

The introduction of decision weights in conjunction
with the ranking procedure in (3) can account for many
choice anomalies. For example, the Allais' paradox of
(4)-(5) can be generated by the property that very low
probabilities are overweighted; that is, n(p) >p if p is
small. Or, more generally, the common ratio effect can
be obtained if the decision weights satisfy the subpropor-
tionality property that n(q}/n(p} < fi(qr)/-n(pr), for all
p > q and r in (0, 1).

It is not necessary to delve into the technicalities of
decision weights to make our point. If a reasonably com-
plete «explanation» of all the choice anomalies listed in
Kahneman and Tversky is to be found in the introduction
of decision weights, the distorsion function has to be very
complicated; see Prelec (1998). For instance, Kahneman
and Tversky (1979) end up assuming that n satisfies five
properties so stringent that, if we add the requirement that
the distorsion function n be continuous, it is impossible to
satisfy them simultaneously. This raises two problems.

The first one is that, whereas the clarity and elegance
of the assumptions on the utility function are obvious, the
distorsion function seems convoluted. The obvious reply
is that a descriptive model does not have to be simple: it
has to work. To follow up the analogy in the introduc-
tion, this is the argument used to defend Ptolemy's epi-
cycles.

The second major problem is that what decision
weights represent or how they should be interpreted is
left unexplained. Silence on this problem reigns even in
Hogarth and Einhorn (1990), whose stated purpose is to
complete prospect theory by giving a descriptive model
of how people assess decision weights for probabilities.
Nor has any light on this problem been shed by the huge
literture dealing with nonlinear ranking procedures based
on distorted probabilities, including the well-known class
of rank-dependent utility models initiated by Quiggin
(1982) and Yaari (1987).

6. A TARGET-BASED DESCRIPTIVE THEORY

This section completes Section 4 by providing a tar-
get-based descriptive theory that explains the experimen-
tal evidence presented in Kahneman and Tversky (1979).
Our purpose is to show that two simple modelling tools
can account for all choice anomalies of Section 5. There-
fore, combining the editing phase from prospect theory,
the target-based explanation of Proposition 1 from Sec-
tion 4 and these two tools, we obtain an alternative theory
with the same descriptive power of prospect theory.

Context-dependence

Let us go back to the Allais' paradox describe in (4)
and (5) in Section 4. Its standard explanation has two
parts. First, since most people are risk-averse, the modal
choices should be A over B and C over D. Thus, in some
sense, the paradox lies in the choice of B. The second
part aims to explain why most subjects choose B.

When comparing lotteries A and B, people tend to give
a disproportionate weight to lottery B. In Kahneman and
Tversky's (1979) words, «people overweight outcomes
that are considered certain, relative to outcomes which
are merely probable». Prospect theory does not capture
this intuition because it accounts for Allais' paradox by
assuming that the small probability of obtaining 0 in lot-
tery A is overweighted, rather than by overweighting the
sure payoff of 2.400 in B. Based on the target-based lan-
guage, we can offer a model for the second part of this
explanation which is closer to intuition.

The agent who comes to the laboratory has some kind
of uncertain target in mind. For instance, he has expecta-
tions about how much he might win (or be paid). Unless
there is a contrary reason, he assesses the loteries he is
offered using this uncertain target. However, if the con-
text provides a strong cue, he may update the prior dis-
tribution of the target and use the posterior distribution
for the ranking.

We believe that context-dependence is the leading
force behind Allais' paradox. When one of the feasible
lotteries offers a sure gain of 2.400, the agent takes this
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into account and revises his prior distribution for the tar-
get. If there is money to be made for sure, this salient
piece of information may be used to update the initial
assessment of the target. Consistent with intuition, the
updating should increase the probability that the uncer-
tain target is 2.400.

How do we model this context-dependence of the un-
certain target? From a normative point of view, this
would require setting up a Bayesian problem in which
the uncertain target T has a prior distribution
P0(x ^T) = F°T(x) that is updated into a posterior dis-
tribution P,(JC ̂  T) = F\.(x) by using the information con-
tained in the pair of lotteries (4) which is presented to the
agent. This could be made in many ways, but probably
they would all be too complicated to serve the simple
descriptive purpose we are after. Therefore, we suggest a
much simpler model that captures the essential features
of Bayesian updating.

Let F°T be the prior c.d.f. of the target and let F¡(x) and
F2(x) be respectively the c.d.f. of the first and the second
lottery in the pair. For instance, if the pair of lotteries
offered is (4), F,(A') is the c.d.f. of lottery A and F2(x) is
the c.d.f. of lottery B. Let Fl

T(x) be the posterior distribu-
tion of the target, given the pair of lotteries offered to the
agent. Then F1

T should depend on the prior F° and on the
contextual distributions F¡ and F2.

We assume that the posterior distribution F\ is a con-
vex combination of F°, F, and F2:

F\(x) = <x0F°r(X> + a,F, (*) + a2F2« (12)

with a0 + a, + «2 = 1 and a, ̂  0 for i = 1, 2, 3. We also
assume that the lotteries offered are evaluated using a
stochastically independent target T distributed according
to F-. Note that the lotteries offered may affect the dis-
tribution of the target; however, once the posterior dis-
tribtion is obtained, the ranking procedure is still linear
because of the stochastic independence of T.

Even if simple, the updating rule in (12) offers many
degrees of freedom. For convenience, we make two as-
sumptions which entail no loss of generality. We explain
these assumptions with reference to the Allais' paradox
of Problems (4) and (5), but they are also used through-
out the rest of the paper. First, we assume that the support
of the prior distribution of the target is the interval be-
tween the minimum and the maximum outcome across
all offered lotteries; that is [0, 2.500]. Second, we assume
that without context-dependence the agent would be risk-
neutral; that is, the prior distribution F°T(x) = U(x) is lin-
ear over its support. This linearity amounts to saying that
that the prior c.d.f. F°is uniform.

Appendix A.2 shows that relaxing these assumptions
by assuming a larger support or some degree of risk aver-
sion would only make the choice of A over B less likely.

Therefore, the «paradoxical» choice of B cannot be an
artifact of these two assumptions. It is also easy to check
that our assumptions imply that C is preferred to D.

The context-dependent explanation of the Allais' para-
dox is that the posterior distribution F\ puts a substantial
weight on the lottery B which offers a sure gain of 2.400.
In our model, the weight on lottery B is oe2. Assuming that
the agent follows a target-based procedure where the
posterior distribution of the uncertain target is given
by (12), Appendix A.I shows that the agent prefers B
to A if the oc's satisfy the restriction (0,0036)
a0^(0,01)a2-(0,1023)a,.

Assuming that lottery A has no contextual weight, let
a, = 0. Then a0 = 1 - oc2. Substituting, we obtain that B is
preferred to A for a2 ̂  (0,36)/(1,36) « 0,2647. That is, if
the contextual weight of B is at least 0,27, then people
would choose B over A. An increase of about 27 % in the
probability that the uncertain target is at least 2.400 can
explain the anomaly in Allais' paradox. The necessary
increase would be even lower if we assumed risk aver-
sion or a larger support for the prior target.

Contrast this with the explanation based on the dis-
torted probabilities of prospect theory. It accounts for the
choice of B by assuming that the probability 0,01 of win-
ning 0 in lottery A is distorted to 7i(0,01) > 0,01, which
makes A less appealing. While the target-based explana-
tion stresses the salience of B, prospect theory opts to
downgrade the competing alternative.

This target-based explanation is robust. For instance, if
we repeat a similar argument for (6) we find that a2 ̂  0,2
suffices to explain the choice of B; see Appendix A.3. In
fact, all the anomalies reported in Kahneman and
Tversky can be explained by a value of cc2 not higher than
the a2 = 27 % found above for the Allais' paradox.

The explanation also applies to cases like (8) and (9),
where any risk-neutral agent is indifferent over the lotte-
ries in each pair. Assuming any degree of (strict) risk
aversion, we should expect the choice of B over A and D
over C. Therefore, the source fo the anomaly here is the
choice of C. By (16) in Appendix A.4, this choice would
follow if the contextual weights are such that
a, ^ 2a2 + K, where K is a suitable positive constant. The
contextual importance of C should be more than twice as
large as D's. This result is consistent with the intuition
that people probably find C salient because it associates a
richer outcome with a very low probability of winning.

Avoiding losses

Besides context-dependence, a descriptive explanation
of the reverse Allais' paradox of (10) and (11) should
incorporate an assumption analogous to loss aversion.
The target-based procedure should be slightly different
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when the problem is framed exclusively in terms of gains
or of losses. When dealing with gains, we assume that
barely making the target is good and therefore that the
agent tries to maximize P(X ^ T). Instead, when dealing
with losses, we assume that just making the target is bad
and thus that the agent tries to maximize P(X > T) or,
equivalently, to minimize P(X ^ T) or P(X < T) would
be equivalent.

Under this slightly modified target-based rule, we can
apply the context-dependent model used before to ac-
count for the choice of A' in (10) and of D' in (11); see
Appendix A.5. Under our usual simplifying assumptions,
the choice of A' over B' can be explained exactly by the
same equation already obtained for (6): if the contextual
weight of B' is at least 0,2, the salience of the certain
outcome in B' leads the agent to prefer A' in the attempt
to prevent a sure loss.

7. COMPARING LANGUAGES

A large part of decision theory is framed in a utility-
based language; see Rubinstein (1988) for a notable ex-
ception. There is no doubt that this language has led to
many successes and there is no question about its import-
ance, especially from a normative viewpoint. This sec-
tion tries to assess the potentialities of the target-based
language for the theory of decision making against the
benchmark of the utility-based language.

How do we judge if a language A is better than another
language Bl The answer depends on our purposes, but
the following four criteria should be part of the answer:

(i) Expressiveness: is A at least as powerful as B for
our purposes? In particular, can it fit everything
we can say in the old language?

(ii) Ease of use: is A at least as easy to learn and use
azsß?

(iii) Explanatory power: does A lead to new concepts
or to «better» explanations?

(iv) Relevance: can A handle interesting problems?
In particular, can it handle problems that are rel-
evant to economics?

We evaluate the target-based language on the basis of
the first three criteria and advance some suggestions
about the fourth criterion.

Expressiveness. As shown in Section 2, the target-
based language and the utility language have the same
mathematical description. Therefore, anything that can
be formalized in one language can also be formalized in
the other one. For example, the normative foundations of
expected utility equally apply for the target-based pro-

cedure. As a formal language, therefore, the target-based
language is at least as expressive as the utility-based lan-
guage.

Ease of use. The target-based language is phrased en-
tirely in the language of probability. Since it does not
require an understanding of cardinal utilities, it is simpler
to explain and to use. For example, instead of estimating
U(x) using the standard utility-based elicitation pro-
cedures, we might ask the agent to draw the density func-
tion for his target and estimate his c.d.f. from there. For
another example, consider the problem of interpersonal
comparison of cardinal utilities: what are the implica-
tions of U¡(x) > U2(x)l In the target-based language, this
difficult question translates into a comparison between
the probability that agent 1 attaches to his target being
less than x versus the probability that agent 2 assesses for
her target being less than x. Since subjective probabilities
can be compared, a target-based language may make this
problem easier to attack.

Explanatory power. Section 4 and 6 were devoted to
show that the target-based language may offer a descrip-
tive theory alternative to prospect theory. For example,
we offered a context-dependent explanation for the Al-
lais' paradox as opposed to the distorsion of probabilities
characteristic of prospect theory. On this basis, we claim
that the target-based language may have at least as much
explanatory power as one descriptive theory based on the
notion of utility.

Relevance. Judging the relevance (in particular to econ-
omics) of a language is a very subjective task. Therefore
we will not attempt it here. However, we will try to sug-
gest some problems which a target-based language may
model or attack more successfully than a utility-based
language. For instance, LiCalzi (1999) estimates bounds
for the expected utility of partially known lotteries which
lead to simple dominance heuristics over limited do-
mains.

We begin with some modelling issues. We have al-
ready argued that if we view U(x) = P(x ̂  T) as a prob-
ability distribution, we can update it on the basis of new
information. Therefore, we can model context-depend-
ence as we did in Section 6. Or, we can model learning as
the repeated updating of U; see Della Vigna and LiCalzi
(1999). More generally, we should be able to model a
situation where preferences are path-dependent, in the
sense that which targets a person sets for herself depends
on her past experiences. Note also that the target-based
language is extremely well-suited to deal with the satis-
ficing approach proposed in Simon (1955) for modelling
bounded rationality.

Economic problems for which the target-based lan-
guage may offer interesting suggestions include the fol-
lowing: bargaining (what is my opponent's target?), ulti-
matum games (acceptance of low payoffs depends on the
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target), search behavior (acceptance is conditional on the
target), purchase of lottery tickets (certainly justifiable
when the target is becoming millionaires). A recent paper
by Shafir, Diamond and Tversky (1997) looks at money
illusion: we conjecture that this occurs when an agent
formulates his target in real values but faces lotteries de-
nominated in nominal values.

Finally, the target-based language may lead to a differ-
ent viewpoint on decision making. The three official ap-
proaches in decision theory are nomative (telling people
what they should do), prescriptive (helping people to ful-
fill the normative criteria), and descriptive (accounting
for what people actually do); see Bell, Raiff and Tversky
(1988). We would like to suggest that these three ap-
proaches could be usefully complemented by a fourth
constructive approach, which should explain how people
construct their preferences whenever they do no happen
to know them already. Both the target-based procedure
and the expected utility procedure in the introduction
were discussed in this perspective; see Chapter 5 in
Payne et alii (1993) for related ideas.

APPENDIX

A.I. Allais' paradox. Kahneman and Tversky
(1979) considers only choices over pairs of lotteries con-
cerning (at most) three elements. Therefore, we can re-
stric attention to choice over two lotteries

*i Pi (x\ <?i
X=(x2 p2 and Y=)x2 q2,

i Pi 1*3 ft

with x¡ ^x2^ x3.

According to the target-based model, when called to
choose between X and Y, the agent would maximize
the probability of meeting an uncertain target T distri-
buted according to the c.d.f. U(x). For lottery X, this
probability is

P(X > T) = piP(xl ^T) + p2P(x2 >T) + p,P(x3 ^ D =

= I PiU(x)

where the last equality follows from U(x) = P(x ̂  T).

When there is context-dependence, we follow Section
6 and replace U(x) by the posterior c.d.f.

Fl
T(x) = oi0F°T(x) + a,F,(x) + a2F2(x) (13)

where F, and F2 are respectively the c.d.f.'s of lottery X
and Y. Therefore, the probability that X meets the uncer-
tain target or, for short, its value is

X PtF\.(xt) = X Pi[xQF°T(x) + a.F.Oc,-) + a2F2(*,.)].
1 = 1 i = i

Consider the pair of lotteries A and B in (6). Applying
(13), the value of lottery A is

(0,33) [a0F°(2.500) + a, + aj +

+ (0,66) [a0F°(2.400) + (0,67)a, + a2]

+ (0,01) KF°r(0) + (0,01)«,]

Analogously, the value of B is

a0F°(2.400) + (0,67)a, + a2 .

Comparing these two values, B is preferred to A if

[(0,34)F°(2.400) - (0,33)F°(2.500) - (0,01)F°(0)].

a0^(0,1023)a, -(0,01)a2.

Suppose that F° is uniformly distributed on [0,2.500].
Then F°T(2.500) = 1, F°(2.400) = 0,96, and F°(0) = 0.
Therefore, the inequality becomes

-(0,0036)a0 > (0,1023)a, - (0,01)a2 (14)

A.2. No loss of generality. Both the assumption that
F° has a support (strictly) including the interval [0,2.500]
and that F° is concave (which corresponds to risk aver-
sion) imply that the left-hand side of (14) would be
greater and therefore that a lower value of a2 would suf-
fice to make B preferred to A. Therefore, we can con-
clude that a contextual weight for lottery B higher than
0,2647 can explain the choice of B over A in the Allais'
paradox under the assumption of Section 6.

A.3. Another pair. Consider the pair of lotteries A
and B in (4). Applying (13), the values of A is

(0,80) [a0F°(4.000) + oc, + oj + (0,20) [oc0F°(0) +

+ (0,20)«,]

and the value of B is cc0F°(3.000) + (0,20)œ, + a2 . Then
B is preferred to A if and only if

[F°(3.000) - (0,80) F° (4.000) -

- (0,20) F°(0)] a0 ̂  (0,64)a, - (0,20)a2.
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For F° uniformly distributed on [0,4.000], we have
F° (4.000) = 1, F£(3.000) = 0,75, and F°(0) = 0. There-
fore, this inequality becomes

-(0,05)«o > (0,64)a, - (0,20)a2 (15)

Letting a, = 0 and a0 = 1 - «2, we obtain that B is prefer-
red to A for «2 ^ (1/5).

A.4. A pair of fair gambles. Consider the pair of lot-
teries C and D in (9). Applying (3), the value of C is

(0,001) [«0F° (6.000) + a, + a2] + (0,999) [a0F°(0) +

+ (0,999)a, + (0,998)aJ

and the value of D is

(0,002) [aoF°(3.000) + (0,999)«, + «J + (0,998) [a0F°(0) +

+ (0,999)a, + (0,998)aJ

Then C is preferred to D if and only if

105[(0,001)F°(6.000) + (0,001)F°(0) - (0,002)

F°(3.000)]œ0 + a, ̂  2a2

Assuming risk aversion, the term in brackets is nega-
tive and therefore we can rewrite this inequality as

a, ^ 2a2 + K (16)

with K ̂  0.

A.5. Gambles over losses. Consider the pair of lotte-
ries A' and B' in (10). Instead of using P(X^ T) as the
value function for a lottery X, we use P(X > T). This only
requires that we substitute the left limit F(x~) for F(x)
whenever a c.d.f. is used in the above formulas. Hence,
we replace (13) with

FT(X) = a0F°(;T) + a, F, (x~) + a2F2(x~).

The value of A' is now

(0,80) [o£0F°(-4.000-)] + (0,20) [a0F°(Q-) + (0,80)a, + aj

and the value of B' is oc0F°(-3.000~) + (0,80)a, . Then
A' is preferred to B' if and only if

[(0,80)F°(-4.000-) + (0,20)F°(0-) - F°(3.(XXr)].

a0 ̂  (0,64)a, - (0,20)a2.

For F° uniformly distributed on [-4.000, 0], we have
F°(-4.000-) = 0, F°(-3.000-) = 0,25, and F°(0~) = l.
Therefore, this inequality becomes

-(0,05)«0 ̂  (0,64)«, - (0,20)02,

which is identical to (15). Fo a, = 0 and cc0 = 1 - «2, we
obtain that A' is preferred to B' for cc2 ̂  (1/5).
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