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ABSTRACT

The property of recursive functions of being definable
in elemental arithmetic is the usual starting point to study
the pathologies of consistent extensions of this theory.
However a not so nice property of the much more exten-
sive class of partial recursive functions permits to give
simpler proofs of some classical theorems, avoiding in a
natural way undesirable technicalities like «»-consistency.

Definition 1. The class of partial recursive functions is
the smallest set of funtions containing sum, product, pro-
jection functions and the characteristic function of equality
and being closed under composition and minimization of a
total function.

It is well known that partial recursive functions are
those numerical functions which can be computed by pro-
grams like Turing machines, Markov's algorithms, etc.
Correlating programs with natural numbers, the function
from co to a) defined by the program of number m will be
denoted (j)m . Wm will be the domain of <j)m and Wms, the
subset of Wm consisting of those a e O) such that the pro-
gram of number m produces an output after s steps when
it starts with input a.

Definition 2. Q will denote Robinson Arithmetic, i.e.,
the theory with the specific set of symbols {0, s, +,.}, and
with the seven usual axioms for the successor function, the
sum and the product.

Definition 3. For any n
times s).

a>, n is the term AÍ...ÍO (n

Definition 4. The arithmetical formula cc(x0, jc,, ..., xn)
extends the partial function | : of —> CD in Q iff we have
for every a,, a2, ..., an, b e CO:

if £(«„ ..., an) = b, then ß. Vx0(a(x0, a,, ..., an) ^> x0

= b).

Extension theorem. Every partial recursive function is
extensible in Q.

The theorem is an immediate consequence of the fol-
lowing three lemmata whose proofs can be found in [1]:

Lemma 1. The projection functions, the sum, the pro-
duct, and the characteristic function of the identity are ex-
tensible in Q.

Let a = a,, a2, ..., an, and x = x{, x2, ..., xn.

Lemma 2. If y<a) = % (Vi(fl)> - > Vm(a)), and ao> ai>
..., am respectively extend %, y^, ..., \i/m e Q, then the
formula

3y, ... Bym («,(?!, x) A...A«m(ym, x) A a00o> ?!. -.
ym)) extends ly in Q.

Lemma 3. If/is a recursive function, £(«,, ..., an) =
/j,b[f(ait ..., an, b) = 0] (where ¡¿b means the least b such
that), and a(x0, x\,..., xn+i) extends/in Q, then the formula

«(0, x,, ..., xm, XQ) AVy (y < x0 -> -• «(0, *„ ..., xm, y))

extends £ in Q, where we define x < y to be the formula
3z (sz + x = y).

Remark. The main difference between the extension
theorem for partial recursive functions and the representa-
tion theorem for total recursive functions is that in the first
case, if P is a consistent extension of Q, (E \fx0(a(x0, a1;...,
an) o x0 = b) implies ¿j(a„ -, an) = b or £(a„ ..., an) Î,
where ¿j(a,, — > an) * means that (a,, ..., an) <£. dom(£,).

Let \i/ : co —> co be the partial recursive function such
that (first diagonalization!)

w(n) = \^ni i f w € dom(^n)
Î otherwise
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It follows from the extension theorem:

Corollary 1. There is an arithmetical formula a(x0, x{)
such that for every consistent extension P of Q verifies:

If V|/(a) = b, then £ V x0(a(x0, a) <H» XQ = b).

Incompleteness theorem (Godei 1931, Rosser 1936).
There is no consistent, axiomatizable and complete exten-
sion of Q.

Proof. Let P be a consistent, axiomatizable extension of
Q, if/ and a(x0, %,) denote the partial recursive function and
the formula defined in Corollary 1., "f denote the Godei's
number of the formula y, D = {'"of : a e P} and
R = {"o" : -i a e P}. Then let r the natural number such that

1 if "0(0, nf e D

<t>r(n) = { O i f "o(0, nf e R
Î otherwise.

Then we have (second diagonalization!),

(P «(0, r) =3- "0(0, iT e D

=* W) = 1

=^ itfr) = 1

=> (£ V*0(a(*0, r) <H> *0 = 1)

=> £ - a(0, r).

On the other hand

(E -. o(0, r) => "o(0, r)" e #

=> W) = 0

=> V/W = 0

=> £ Vx0(oc(j:0, r) <-» *0 = 0)

=> Ë 0(0, r).

Therefore, it follows from the consistency of P that
neither o(0, r) nor -> o(0, r) are theorems of P.

Corollary 2. The theory Th(9i) of the structure 3\£ =
(<9, 0, s, +,.) is not axiomatizable and undecidable.

Proof. Th(9O is a consistent and complete extension of
Q, and decidable implies axiomatizable.

Undecidability theorem (Church, 1936). There is no
consistent and decidable extension of Q.

Proof. Let P be a consistent extension of Q, and let D
and R be as in the proof of the incompleteness theorem.

We prove that there is no recursive set M such that D c M
and R c M.

Indeed, if such M exists let \¡/ and a(x0, x}) the partial
recursive function and the formula defined in Corollary 1.,
and let s denote the natural number such that

&(«) =

1 if "0(0, n)" e M

0 if "0(0, n)" í M.

Then we have (second diagonalization!),

"0(0, s)" e M => 0/5; = l

=> v(s) = \

=> £ Vx0(a(x0, s) <-> x0 = 1)

=> £ - o(0, s)

=> "0(0, s)" e /? c M.

On the other hand

"0(0, sT <t M => 0/sJ = 0

=> y/fij = 0

=> (£ V%0(oc(^0, s) ̂  ,x0 = 0)

=> £ «(0, s)

=> "o(0, s)" e D c M.

Therefore we have:

"o(0, s)" e M iff "o(0, s)" í M, a contradiction.

Both Rosser's and Church's theorems are an immedi-
ate consequence of a much stronger inseparability result.

Definition 5. Two disjoint sets A, B c co are recursive-
ly inseparable if there is no recursive set C such that A c
C and £ c C.

For every pair of disjoint sets A, B, the following prop-
ositions are equivalent:

[a] A and B are recursively inseparable.

[b] ->3x3y(Ac:Wx&BcWySíWxrlW = 0 &
WxvWy = co)

[c] Vjc Vv ((A c W, & B c Wj, & Wx n Wy = 0) -^
3z(z € fj£ n Wy))

[d] 3F Vx Vy ((A_c ̂  & B c W; & Wx n Wy = 0)
-> F(x, y) e W? n W^))

(axiom of choice!).
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The equivalence between [a] and [d] justifies the fol-
lowing

Definition 6. Two disjoint sets A, B c co are effective-
ly inseparable if there is a recursive function / verifying

Vx Vy_(G4 c_Wx & B c Wy & Wx n Wy = 0) -^
f(x, y ) € Wxr^ Wy).

Inseparability theorem. For every consistent and ax-
iomatizable extension P of Q the sets D = {'"of : a e P}
and R = {~oT : ->a e P} are effectively inseparable.

Proof. Let i/^and a(x0, JCj) be the partial recursive func-
tion and the formula defined in Corollary 1 and let/be the
recursive function defined by the identity f(a) = "a(Q, a)"1.
By the recursion theorem there is a recursive function h
such that

<t>h(a,b)(n) =

0 if 3s(fh(a,b)zWb¡s-Wa,s)

1 if 3S(fli(a,b)<EWa¡s-W^}

Î otherwise.

It is clear that/Tz is the inseparability function of D and
R, because if

D c Wa, R c Wb and Wa n Wb = 0

then

Indeed

Ma, b) e Wa

fh(a, b) Wa^Wb.

«Ww W«. b)) = 1

Y(h(a, b)) = 1

£ V*0(cc(x0, h(a, b)) <-» *b = 1)

|£ -ï «(0, h(a, b))

"0(0,h(a, b)r =fh(a, b)<=RcWbc Wa,

a contradiction.

Similarly

fh(a, b)^Wb^ ^b) (h(a, b)) = 0

=> v^^f0' ^-) = 0

=^ [£• Vx0(a(x0, h(a, b)) <-» x0 = 0)

=> (£ «(0, h(a, b))

=> XO, h(a, b)r =^fa, b) e D c Wa c W¿,

a contradiction.

Corollary 3 (Church). No consistent extension of Q is
decidable. The proof is obvious.

Corollary 4 (Rosser). No consistent, axiomatizable
extension P of Q is complete.

Proof. Let D, R, f, h be as in the proof of the insepa-
rability theorem. If L is the set of all arithmetical closed
formulae, and we define G, a, and b by the identities

G = {"tf : a e L],

Wa = D,

Wb = R<u G,

it is obvious that

D c Wa, R c Wb and Wa n Wb = 0

and hence

fh(a, b)eWariWb=GrlDr¡R.

fh(a, b) e G means that there exists a formula a such
that "of =fh(a, b). And it follows fromfh(a, b) e D r\R
that a «Ë P and -.« € P.
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