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ABSTRACT

We give a characterization of quasipower weights in
terms of Calderón transform of measures on (0, oo),
similar to the one given by Coifman and Rochberg for
the Muckenhoupt class J\.v

In the last few years (cf. [BMR 1, 2, 3, 4, 5] and the
references therein) we have been studying the connec-
tions between weighted norm inequalities and interpola-
tion theory. For example, in [Mi] and [BMR3] we have
shown that certain basic self improving inequalities in
the theory of weights can be reinterpreted as inverse re-
iteration theorems. In this fashion the classical self im-
proving results in the theory of weights follow as a conse-
quence of the properties of solutions of certain elementary
differential inequalities associated, via reiteration, to the
AT-functionals of the weights in question (cf. [Mi], [BMR
2, 3] and the references therein). Our approach leads to
new methods to attack the classical problems while at the
same time producing new results in interpolation theory.

In this note we illustrate once again the interplay between
the theory of weights and interpolation theory focussing
our analysis on the Coifman-Rochberg theorem [CR].
This celebrated result gives a very simple algorithm to
construct all the weights in the Muckenhoupt class J\.¡,
and therefore, by the Jones factorization theorem, pro-
vides a constructive characterization of all weights in the
Ap classes, p > 1.

To be more precise, the Coifman-Rochberg theorem
gives a characterization of JA¡ weights based on the proper-
ties of the Hardy-Littlewood maximal operator, our analysis

here will lead us to an analogous characterization of
quasipower weights in terms of the Calderón operator.

It is instructive to see the route we take to arrive to the
formulation of the results.

Recall that w e JV, iff there exists C > 0 such that

Mw < Cw, (1)

where M denotes the Hardy-Littlewood maximal oper-
ator.

The Coifman-Rochberg theorem provides the follow-
ing characterization of J^, : w e J\.t if and only if there
exists 0 < h e L°°,/e L,'oc, a e (O, 1), such that w = h(Mf)x.
This, of course, is based on the validity of the formula

M((MfT) < C(Mff. (2)

If we let p = l/a, g = /a, then (2) takes the following
form: for any g e Lfoc,

M(M„g) < CM 9. (3)

Taking rearrangements and using well known estimates
for the maximal operator we get

i f / i f j Y/p /i f ' V"
- - g*Wdu\ ds<C(-\ g*(ufdu\ . (3')
í Jo Vs Jo / V Jo /

Let us now recall that given a compatible pair of Banach
spaces A = (A0,Al), we let fora eA0+Al,t>0, K[t, a; A)
be defined by

K(t, a; A) = inf {\\a0\\A + i l ia ,
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where the inf runs over all possible decompositions a =
= a0 + a l5 with a¡ e A¡, i = O, 1.

In terms of A'-functionals, (3') can be rewritten as

/ K'íí·^'P o- TP Tœ\ \ K~(tl/P o- J P 7°°"»„/ &\() ,g,L,L ) \ K(t ,g, L , L· )
KV> T^p ' L ' L -Ct Tu •(4)

This suggests to define the class JA.(L\ Lœ) as follows:
/e J4.(L', Lœ) iff/is non increasing and there exists a
constant C > 0 such that for all t > 0 we have,

K(t,f, V, Lœ)
< Cf(t). (5)

/1 r< Y"
Note that since I - g*(u)pdu\ decreases, the optimal

V Jo /
way to do this is apparently to write

i p V1» /i fs Y"
- g*(u)"du\ = - /*(M)MM X(00(i) +
" J o / V Jo )

\ i
y

g(i, ')

Then,

/1 f* V*
+ - /Wrf« ^,„,(5).

V6 Jo /
I >

Remark. Note that if we let p = l in (3)-(3') the re-
sulting inequality can be reinterpreted as a limit case of
Gehring's Lemma studied in detail in [BMR3].

From our previous discussion, we see that the Coif-
man-Rochberg theorem in this context implies that for
any p > 1, and g e If, we have

#((-)1/p, g, U, Lœ)
\MP

e JZL(L', Lœ). (6)

Of course once we know the validity of (6) a direct ele-
mentary proof of it can be established without relying on
the Coifman-Rochberg theorem and the rearrangement
inequalities for the maximal operator. Indeed, more gen-
erally the following reiteration formula is valid for pairs
of Banach spaces

/ K((.r°,s;\p,A,}
A l r > / y - e ' L · 'L· <

(6')

<ct
K(¿-°,g;A0tp,A¿

TA r Y"
»/(-, O » , = - 8*(u7du) ds =

Jo V5 Jo /

f' / f s Y"
= s-l'p( g*(uYdu\ ds<

Jo \Jo /

/ f YP r
< g*(u)"du} s'Upds =

VJo / Jo

i f . . , . . Y"
= ct - g*(uYdu

and similarly

/! rt YP
t\\h(;t)\\œ<t(~ g*(uYdu) .

V' Jo /

Remark. In this note we do not consider the most
general results that can be obtained by our methods. For
example, a more general version of (6) (resp. (6')) is
closely related to the iteration results for maximal oper-
ators in [Ne], (cf. our related article [BMR5]/or rear-
rangement estimates of variants of the Hardy-Littlewood
maximal operator.)

We only consider the elementary proof of the (6) in de-
tail, the proof of (6') is analogous, if we use Holmstedt's
formula. Now, we want to write

K(^lp 9- f fœ} /1 f s \VPK(S ,g,L,L) f i _ l g,(uYd\ =/(M) + A ( j > f ) >

s1'" \s

in such a way that

In order to continue our discussion we need to intro-
duce some classes of weights and develop notation.

Let us denote by V the compatible pair of Banach
spaces

U = (L\dx), L\dxlx)}

on the interval (0, oo). It is well known (cf. [BK]) that

/ Jf(( \^P o f P f °°ì \
\\f(-J)\\l+t\\h(-j)\\m~K¡t,^^^—t-,L\L">}- K(t,f;V)= min {-, l }f(x)dx.
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In the sequel w will denote a weight, i.e., a non nega-
tive Lebesgue measurable function defined on the inter-
val (0, oo ). We say that w satisfies the M{ condition if
there exists a constant C > 0 such that for almost all t > 0

w(x)
dx < Cw(t). (7)

We shall say that a weight satisfies an M1 condition if
there exists a constant C > 0 such that for almost all í > 0

- I w(x) dx < Cw(t).
t Jo

(8)

It is well known (see [Mu], [Ma]) that a weight w satis-
fies the M, condition if and only if Pf e L'(w) for all
/e L'(vv), where P is the Hardy operator defined by

Pf(t) = - f(x)dx

and L\w) is the class of Lebesgue measurable functions/
r»

defined on the interval (0, oo) such that | \f(t) I w(f)dt <

< +00. Similarly the class M controls the boundedness
of the operator Q, the adjoint of P, defined by

Qf(t)= | 'Jf-^dx.

Actually, <2/e L'(w) for all/e L'(w) if and only w satisfies
M1. We define the Calderón operator SbyS = P + Q =
= P ° Q = Q ° P, so that

Sf(f) = min '(-'-f·/W^·

We shall say that a function defined on (0, oo) is 5-
locally integrable (/ e Sloc) if Sf(i) exists everywhere
t > 0. In a similar way a non negative Borei measure u,
defined on the borelians (O, co), is S-locally finite if

S/40 = min •{-•> -}• du(x) < oo,
'x t '

for all í > 0.

It will be also convenient to use the notation /~ g
whenever for some constant C > 0 and for all x we have

Ì/W < g(x) < Cf(x).
L·

We say that a weight w on (0, oo) is a quasipower, i.e.
w e Q, if

Pw <~ w, Qw ~ w.

In particular, quasipower weights satisfy w ~ Sw. These
weights are frequently used in interpolation theory to ex-
tend the classical interpolation spaces of Lions and
Peetre (see [BL], [BK], [G] and [K]).

Remark. In [BMR1] we considered real interpolation
spaces constructed using the more general class of t?p-
weights. These weights control the weighted norm in-
equalities of S in Lp(w). Since these classes change with
the parameter «p», real interpolation spaces of Lions-
Peetre type based on these weights have reiteration prop-
erties that effectively depend on the «second» parameter.
In this context extrapolation theorems of Rubio de Fran-
cia type come up as substitutes for reiteration theorems.

In reference to the previous remark recall that, in par-
ticular, ¿?, are the weights that satisfy both M1 and M,
conditions.

Since w ~ Qw, every quasipower weight is equivalent
to a non increasing quasipower weight. Remark also that
a quasipower weight is an JA.,-weight.

At this point we should note that the classes Q, ¿?, and
JZLi are all different from each other.

The class ¿?, is strictly larger than Q as it is shown in
[BMR1]. Indeed, let

w(t) =
\\IJt if 0 < t < 1

if 0 < t < 1

It is easy to compute

Sw(f) =

and therefore we see that w e ¿?, but ca £ Q. It is also easy
to see that w is not in J3.,. Indeed, if w e J3., then for some
constant C > 0 we would have

for almost all a e (1/2, 1) and for all b > 1, which is false.
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On the other hand, the weight w = 1 is in JA¡ but is not
in¿?,.

The class JAt is different from Q. In fact, consider the
weight

1
if 0 < t < -

ei(log O2

W(0 = < -. ii t>e
} (log i)2

(9)

C, otherwise,

it is readily seen that w e ¿A.\, and moreover,

when f — » 0 ;

5w(i)
í I log il

1
(10)

log í
when t —> oo

Therefore, Sw <£ Ml and consequently w ^ .̂.

The main result of this note is the following

Theorem. Let f be a non negative function in f e 5loc.
Then, for every p > 1 there exists q > I such that

K(t,f; Lpyfr 1 / fK(.,f;Ll)\* -^
t« ) ~1KV\ (.y ' ; L '•

Conversely, if F is a non negative function on (0, oo)
such that

F(i)~-tK(t,F;V),

then there exist p, q > 1 such that

'£(*,/; ¿JA""
F(?)'

t*

The proof of the theorem can be easily deduced from
the following auxiliary results. We begin with a very
simple technical lemma.

Lemma 1. Let f be a S-locally integrable function.
Then,

(1) Sf(x) = 5/(l) - í ^^ dy.

(2) Sf is a (? function.

(3) If \\. is non negative S-locally finite measure then
xSu(x) is non decreasing, and Sß(x) is non in-
creasing.

Proof.

(1) By Fubini's theorem we have

Pf(y) , f ' ^ P - wdy = \ — \ f(z)dz =, y Ji / Jo

= i f(Z)dz\'^+ r/feMzp^:
Jo Ji y Ji Jz y

i\ p
= ( i - - /fe)<fe +

+ fWi-!>x =
J i V¿ */

= -s/w + s/(i).

(2) Is an inmediate consequence of (1).

(3) If the measure \i is absolutely continuous with
respect to Lebesgue measure, i.e. dfj. - fdx, f > 0,
we note that (xSf(x))' = Qf(x) > 0 and (Sf(x))' =
= -x~lPf(x) < 0, for all x > 0. For a general
measure, let 0 < x < x'. Then we have

f x
xSn(x) = /X(0, x ] ) + \ - du(y) =

J (x, oo) y

= fji((0, x']) - fj{(x, x']) + \ - dn(y) +
./(*,*•] y

+ f - diJL(y) < /i((0, x']) +
J (x', oo) y
c ix \ r je

+ - - 1 ^ ^ ) + -df^y)<j(X,x'i\y J J«,cc)y
< x'S¡i(x')

and

Sfi(x) - S//(*') = ( - - -,} n((0, x]) +\x x J

+ { ^--^\dn(y)>
J<.x,xi\y XJ

- (ï - ?)^(0'x]] - °-\ Ji A /

Remark. For \i absolutely continuous with respect to
the Lebesgue measure, and using the expression

Sf(f) = - K(t, f- L1),

it is also easy to prove (3).
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Lemma 2. Let w be a weight on (0, oo), then

(1) Ifxw(x) is a non decreasing, then w" satisfies M1,
for all 0 < a < 1.

(2) I f w ~ Pw, then w < CQw, for some constant C > 0.

(3) I f w ~ Qw, then w < CPw, for some constant C > 0.

Proof.

(1) Let t > 0. Since x < t implies that jtVOt)" < fV(i)a

we have

i r i
w(xYdx < w(tY.

1 - a

(2) For some constants C, C' > 0 we have

w < CPw < CSw = CQ(Pw) < C'Qw.

(3) Is similar to (2).

As a consequence we obtain the following

Corollary 3. Let n be a non negative S-locally finite
measure and let 0 < a < 1. If we consider the weight
w = (S/i)" then w ~ Pw and w < CQw, for some constant
C > 0 .

Remark. Corollary 3 is sharp. In fact if we consider
once again the function w defined by (9) above, by using
the computation ofSw given in (10) we see that Sw £ M{

and (SwY $ M, for any 0 < a < 1.

However, a suitable modification of (Sf)a does pro-
duce quasipower weights:

Proposition 4. Let u be a non negative S-locally fi-
nite measure and letO<a<\. Then there exists a posi-
tive e such that the weight

,. (Sl*x))"
w(x) = ±—-^-

Xs

is a quasipower.

Proof. Since (Suf e M1 by [BMR1] Proposition 2.3,
there exist e > 0 such that

^.e^E^,.
xe

consequently, for some constant C > 0 and for all x > 0
we have

1 C'SjuW C5X*)"

For any x > 0 we have

Qw(x) =

< s/u(Xy

The result follows.

Su(yT

^dy-

x y
dy Su(xY .

= C ——- = Cw(x).e + l

The converse is also true.

Proposition 5. Let w be a quasipower weight, then
there exist f S-locally integrable function, a e (O, l) and
e > 0, such that

w - (sf(x)Y

Proof. Since w ~ Qw there is no loss of generality if
we assume that w is a non increasing function. More-
over, the reverse Holder inequality for ¿?,-weights (cf.
[BMR1], proposition 2.3) implies that for some e > 0 the
weight w¡(x) = xew(x) e M,. We are going to prove that wt
is also a quasipower weight. The condition M, says that.
Qwl < Cwv Also

1 í'' 1
w}(x)dx = - \ x£w(x)dx <

í
~ t

tew(x)dx < Cfw(f),

thus,

On the other hand,

w,(i) = fw(f) < C

< C

Pw, < Cw,. (11)

w(x)
tedx<

X

' }fw(x)

X
dx = C

w¡(x)
dx,

x Jo y

therefore

w, < Cß(w,).

By Lemma 2, we see that w¡ e $,.

As before, since w, ~Qw¡, we can assume without
loss that w{ is non increasing.
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In particular, from (11) we see that w, satisfies the
Gehring condition (3.5) in [BMR3], pag. 16. It follows
from Theorem 2.1 of [BMR3] that there exists ô > 0 such
that

i r-t \m + ô /-
' w}+s) <- I Wi<C'Wl.

Thus, if we/(x) = wt(x)l+s, we have/~ P(f), and more-
over

I
3 fÍY\ Pœ U! (r\
Wdx<w^ ^dxZÇfd).

Again by Lemma 2, we have that

f ~ P f ~ Q f ~ S f ,

and therefore

w, ~ (PfY - Q(fY ~ (SfT,

for a = 1/(1 + ô), and the desired result follows.
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