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ABSTRACT

Usando técnicas básicas de geometría hiperbólica,
construirnos un dominio fundamental de las curvas de
Fermat y sus cocientes. A partir de éste, calculamos una
base del grupo de homología singular H¡(FN, Z) y deter-
minamos el apareamiento de intersección respecto de
esta base.

We construct a fundamental domain for the Fermat
curves FN : XN + YN = 1, and their quotients, using basic
facts from hyperbolic geometry. We use it to give a basis
for the singular homology group H^(FN, Z). We also de-
termine the intersection pairing with respect to this basis.

1. INTRODUCTION

Let FN : XN + YN = 1 be the Fermat curve of Mh de-
gree, with N>4. The period lattice of FN is well known
([3], [1]). In order to compute this lattice, one needs a
family of generators for the singular homology group
H,(FN, Z). In the references mentioned, this family is
constructed by lifting some paths in the complex plane to
the curve, and computing the action of the automorphisms
of FN in these liftings. But no basis for Ht(FN, Z) is given,
and it is hard to calculate the intersection product of the
generators. In particular, finding a symplectic basis for
H¡(FN, Z) is rather messy. A symplectic basis is necessary,
for instance, to compute the theta functions associated to
the curves.

We present a construction that allows easy specification
of both a basis and the intersection product in Ht(FN, Z).
Using basic facts from hyperbolic geometry, we build a
fundamental domain for FN, as a polygon with some
sides and vertices identified. By elementary topology

methods, we extract a basis for H¡(FN, Z) from this poly-
gon, for which the intersection product is trivially com-
puted. We also develop these computations for the quo-
tient curves of the Fermat curves of prime exponent.

2. CONSTRUCTION OF CURVES OF GENUS 0

Let us denote by D the complex unity disk, with centre
a given point A in the complex plane. Let N > 4 be an
integer. Since ^ + ^ + ^ < 1, we can construct inside
of D an hyperbolic triangle with interior angles n/N, n/N,
n/N, and with one vertex on A. Call the other vertices
B, C. Let ABC' be the symmetric triangle with respect
to the side AB.

' Partially supported by DGES:PB-96-0166.

Figure 1

Let a (resp. /?) be the hyperbolic rotation of centre A
(resp. B) and angle 2n/N. Both rotations are elliptic linear
transformations and they operate on D and on its boun-
dary. Thus, the discrete group

F = < a, ß; y.N = ßN = 1 >

is a fuchsian group of the first kind. It is a general fact
([2]) that the quadrilateral Q - ACBC' is a fundamental
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domain for the action of F on D. As none of the vertices
of Q is on the boundary of D, the quotient ¿?= F\D is a
compact and connected Riemann surface. On 6, the
orientated sides of Q are identified in the following way:

AC ~ AC', BC ¿ BC'.

We have 2 inequivalent sides, and 3 inequivalent
vertices. Hence

X(¿) = 1 - 2 + 3 = 2, g(¿) = 0.

We now construct two new curves of genus 0, as coverings
of ¿?. Consider the group homomorphism

r ̂  Z/A/Z
a^ 1

/?—»0.

The kernel of <pA is YA = (ß, DY), where DY is the com-
mutator subgroup of F. A fundamental domain for the
action of YA on CD is

PA = Uf=-0V(0,

which is a hyperbolic regular polygon with 2N sides and
interior angles equal to n/N. The vertices of this polygon
are the points B¡ = tx.'(B) and C, = a'(C). We enumerate
the sides of the polygon from 0 to 2N - 1 counterclock-
wise, starting from Cfßü.

Figure 2

We will denote by ßi the rotation of center B¡ and angle
2nlN, ßi = a'/?«"1'. Since ßt e ker <f>A, every even side on
the quotient curve 6A = FA\D is identified with the next
odd side and all the vertices C¡ are identified:

2/ ~ 2 /+ 1, / = 0, ...,N- 1,

Q ~ ci ~ c,

The curve CA is a covering of degree N of ¿?, ramified
over the points A, C. The natural projection ¿?A —» ¿?maps
every quadrilateral Q¡ = a'(Q) onto the original quadri-
lateral Q. The group of automorphisms of 0A over ô is
HA = Y/YA = {a}, which is cyclic of order N.

We can mimic the construction of UA, interchanging
the roles of a and ß. We obtain a new curve ¿?ß of genus 0,
corresponding to the fuchsian group YB = (a, DF). A fun-
damental domain is composed by the quadrilaterals
QJ = ßj(Q)- The group of automorphisms of ¿?5 over ¿? is
HB = r/YB = (ß).

Since the genus of ¿?A is 0, there exists a FA-automorphic
function establishing an analytic isomorphism between
¿?A and P'(C). Let us call this function X. We assume X
normalized to satisfy X(A) = 0, X(B) = 1, X(C) = oo. We
have an isomorphism between the function field of ¿?A,
C(¿?A), and C(X). Similarly, we can find a FB-automo-
rphic function Y establishing an analytic isomorphism
between CB and P'(C), with Y(A) - 1, Y(B) = 0, F(C) = oo
andC(¿?s)~C(Y).

Proposition 2.1.
we /za^e

For some r, s e Z coprirne with N,

X o « = e^X, y o a - e2roW y.

Hence

X(¿?J = l - N + (N + 1) = 2, g(^) = 0.

Proof. The zeroes and poles of X ° a coincide with
those of X, because a(A) = A and a(C) = C', which are
identified on ¿?A. Hence, ¿?A being compact, the quotient
X(a.(z)}K(z) is a constant function fc. We obtain

X(<¿(¿)} = kiX(z).

For i = N the last inequality tells us that k is a jV-root of
unity. If tí - 1 for some; < N, we would have X °aj = X.
As X is bijective, that would imply that aj' = 1, which is
not possible. The second equality is proved in the same
way. D

Corollary 2.2. C(¿?J = C(X") = C(YN).

Proof. We have

XN o a = XN, YN o ß = YN,

and hence both functions are invariant under the action
of F. Thus, CCX") e C(¿) e C(¿?J = C(X), C(YN) ç
Ç C(¿) £ C(¿?B) = C(yj. Counting degrees, we obtain
the equalities. D

Proposition 2.3. For any z e ¿?,

XN(z) + YN(z) = 1.

Proof. The functions Xw and 1 - yw have the same
zeroes and the same poles over ¿?, and therefore their
quotient is constant. Evaluating this quotient on the point
B we see that its value is equal to 1. D
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3. UNIFORMIZATION OF THE FERMAT
CURVES

We define the group homomorphism

r -U um. x z/NZ
«—»(1,0)

ß -^ (o, i),
whose kernel is TN = DF. We will see that the quotient
curve, ON - DF\B is a model for the Fermat curve of
degree N. Let HN = TIDY be the group of automorphisms
of 6N over 6. We can take as representatives of the
classes in HN the elements {/5/a1

tion, the polygon
\N
Uj = r With this selec-

P = Uf/Jo (ßV'XÖ)

is a fundamental domain for the Riemann surface 6N.

We will now introduce some notation. From now on,
we will consider all indices as integers modulus N. Put
QÍ.J = #«,-(ß) = ßl(Qi = oYßO. For every / e {O, l, ...,
N- 1}, the quadrilaterals Q¡¡0, Q,,,, ..., Q,tA,_i form a
2W-sided regular polygon T¡, centered on the point B¡. We
label its vertices C¡ y, starting from the point A and moving
counterclockwise,'so that Cl2j = ß}(A), Cl2j+\ = jß/(C;J.
Note that, under the natural projection GN —» 6, the points
C¡ 2j map to the point A, and the points C¡ 2¡+ \ map to C.
Finally, we denote by b¡ j the side of Q which goes from
the point C¡¡ to the point CÍJ+Í. With this notation, the
boundary of the polygon P is described by the sides
¿>o,iA>,2> • • •A .w-^&i . i . • • • > Vi,yv-2- The case yV = 5 is
sketched in figure 3.

03

Proposition 3.1. TTze geras o/^is (N-l)(N- 2)12.

Proof. Let us analyze the identifications of the sides
and vertices of P on ¿?N. We have

ußl^ßrJQ,,. y_,) = ß{+ tf(bk 2j_,) = ßi+i(bi+,, o) = èri i, 2,-

Hence

/ = O, ..., N - 1, y = l, ...,N- 2.

In the same way,

^í, 2/--1 ~ £ / + l , 2 / >

'C« 7 = l , . . . , 7 V - l

i = 0,...,N- 1.

Q, 2/ ~ Q, 2/ ~ ^JV- l , 2y '

/^ /^ /~i /^
0!, 1 '"i + 1, 3 M + 2, 5 ~ " '*"/ + N- 1, 2AÍ- 3'

Therefore

X(¿N) = i-N(N- l) + 2N- l=-N2- 3N,

and g(ûN) = (N-\)(N- 2)12. D

Proposition 3.2. TTie cwrue ¿?w ií a model of the Fer-
mat curve of degree N.

Proof. By proposition 2.3, it is enough to see that
C(¿?w) = C(X, F). The functions X and Fare rw-automor-
phic, because F^ <= FA n F5. This gives the inclusion
C(X,Y) c C(¿^). The polynomial YN + (XN - 1) is irre-
ducible in C[X] [F] (because it is (X - l)-Eisenstein), and
thus [C(X, F) : <C(X)] = N, which implies the desired
equality. D

4. A BASIS FOR J/,(FW Z)

In this section we will find a basis for H^(FN, Z). For
every /, 7, choose a path €; 2j + , joining the middle points
of the sides b¡ 2j+i, bi+í 2j+2 of the fundamental domain
we have found for FN in the last section. Our result is
based on the following lemma:

Lemma 4.1. Assume that S is a compact connected
surface, given as a polygon P, with 2r-sides identified by
pairs [a¡, b¡], but with vertices not necessarily identified.
Let l¡ be a path joining the middle points of the sides a¡
and b¡, passing through the interior of the polygon. Then,
the first homology group H^S, Z) is generated by the
classes o//l5 ..., lr.

Proof. It is very well-known that with a finite number
of elementary transformations, we can pass from the
original polygon P to a new polygon Q with all vertices
identified and the border given by

Figure 3 c,c2c7V ••• c-c.^cr'c:;,^, • • • bnbn.
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In order to prove the lemma, we will see that:

a) The result is true for the polygon P if and only
if it is true for the polygon Q.

b) The result is true for the polygon Q.

We begin by part b). It is well-known that the classes of
the sides (c,, ..., cg, bt, ..., bn} of the polygon Q generate
Hf(S, Z). Let us consider the path /, (resp. /2) joining the
middle points of cl and cf1 (resp. c2 and c2'). It is evident
that /[ is homotopic to c2 and that /2 is homotopic to c¡, so
that we can replace c,, c2 by /,, /2 in the list of generators
of #i(S, Z). In the same way, the path // joining the
middle points of the consecutive sides b¡ and b¡ is
homotopic to any of these sides, so that we can also re-
place b¡ by //.

Let us now proof part a). We know that the classes of
the sides of the polygon P generate the full homology
group Ht(S, Z). In passing from P to the polygon Q we
make a finite number of elementary transformation of
one of the following four types:

al) Cancel two consecutive sides of the first kind
(i.e., of type aa~l).

a2) Transform two different vertices into equivalent
vertices.

a3) Transform two sides of the second kind (i.e., of
type ad) into consecutive sides.

a4) Transform a couple of pairs of sides of the first
kind

••• a¡ ••• a] -a? ••• ajl •••

into consecutive sides • • • apjU^aHV
In each of these transformations, we pass from a polygon
Pk to a new polygon Pk + { . We denote by /f the paths join-
ing the middle points of the sides of the polygon Pk. One
can check that after each of these transformation, the
subspaces </*, ..., /*> and </*+1, ..., /*+ 1> of H^S, Z) co-
incide, so that the lemma is true for Pk if and only if it is
true for Pk+i. This proves a). D

Theorem 4.2.

a) A basis for H{(FN, Z) is

K f f f f \
O, 1' ^0, 3» • ' • ' O, 2AÍ-3' ^ 1 , 1 » • ' • ' ^N-3, 2N-ÌÌ-

b) The intersection product in H¡(FN, Z) is given by

tfi.y-1, € A 2 t _ , ) = + l k>j,

(^ ; ,2 / - l>^<+l , l ) = (^i. 2y-l' ^¡+ 1,3)- '" = (^ / ,2 / - l '^ /+l ,2 / - l ) = 1

(*•;, 2 / - l> ^ i + l , 2 / + l ) = '" = (H 2/-1' "i+l,2N-i) ~ "

(^,^-i.^+r,2*-i) = 0 r=2 , . . . , ^ -2 ,A = 0 , . . . ,N-l .

c j Ht(FN, Z) ¿s a eje/Je Z[a, ß]-module, generated by
any of the paths t, y+r

Proof. If we apply lemma lemma 4.1 to our case, we
obtain

•^lC'V' ^-) ~ (^0, 1' *0, 3' ' • • ' ^N-\,2N-V- (1)

Of course, this family of generators cannot be free, be-
cause it has N(N - 1) elements, while the rank of H^F^ Z)
is (N - 1)(AT - 2). But one can check easily that the
cycles

I 0^0.3+1) 7 = 0, ...,N-2,

Z (Wi+*) J = 0,-,N-2,
k = 0

are homotopic to zero, and so we can eliminate the paths
VN-ï,2/+1> ^v-2,2j+ iJ = 0,...,N-2, from the generators
(1). As the number of remaining generators coincides
with the rank of H\(FN, Z), they form a basis.

The second assertion is immediate. We will prove c)
only for the path €0 , but during the proof it will become
evident that it is also true for any £¡ 2 y + , . It is evident that
a(£0 ¡) = € ,_ 2 . Let us compute ß(£0 ,). Denote by M¡ j the
middle point of the side b¡j, and by R¡ j the center of the
quadrilateral Q¡ ,. We deform €0 , to the homologous path
€' + €2 + €3 + C + f5, where: '

- ^1 goes from M01 to Rol;

- -C2 goes from /?01 to R00;

- €3 goes from /?00 to /?10;

- €4 goes from R10 to Rn;

- €5 goes from Rn to M12.

Taking into account the identifications in the boundary
of the polygon P, we see that ß(Ql 0) -Q\,\- We apply ß
to the five preceding paths:

-€, = /?(€') goes from M02 to R02;

- €2 = ß(f2) goes from R02 to R01;

- €3 = ß(f3) goes from R01 to M01, which is identified
with M12, and then continues from this point to /?,,;

- €4 = j?(€4) goes from Rn to RÌ2;

- €5 = /?(€5) goes from R12 to M14.
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M,

M,02

Figure 4

With this description of ß(%0 ,), we can compute its
intersections with the rest of the €,- 2j+\ using a) and b).
From these calculations one sees that

Wu) = * i . 3 - * i , i >
¡»(P \ _ p P
P V^o, í ) — C l , 5 "" *I ,3 '

RN-2(0 \ _1 /> _ />
P ^0,1/ ~ ^1,2^-3 ^L ,2W-5>

T-'(*„..) =-4). ,•

Using that a !C^o,2/+i) = ^ / . 2 / + i > we obtain cj.

(2)

D

Remark 4.3. Combining equations (2) and theorem
4.2 we /m<3? ínaí ?/ze paths

a''/?y'(€0i,), z = 0, ..., W - 3, y = 0, ..., W - 2,

form also a basis for H¡(FN, Z).

Remark 4.4. Wiffo f/te preceding result, the computa-
tion of a symplectic basis for H¡(FN, f) for a concrete
value of N can be easily performed using the Gram-
Schmidt orthogonalization process.

5. QUOTIENTS OF THE FERMAT CURVE

We have given a presentation of the Fermat curve CN
as a covering of a curve C of genus 0. We now study
subcoveringsCN-»G' -*C. As Aut(CN/C) = TIDY, these

subcoverings correspond to subgroups Y ID P ID DY.
We know that Y/DY = UNI. x UNI, so that these sub-
groups F' must be of the form Yr s := (arßs, DY). For
instance, the subgroups Y{ _ 0 and ro , give rise respective-
ly to the curves CB and CA of section 2.

In order to simplify the exposition, from now on we
will suppose that N = p is a prime number. In this case,
every subgroup Yr s is conjugate to a subgroup Yr „
so that we can confine our attention to the subgroups
Yr := (a.rß, DY), r ^ O, -1 (mod p). We call C;. = Yr\D
the subcovering ofCp/C corresponding to the subgroup Yr.

The subgroup Yr is normal, since it is the kernel of the
surjective map

r ^» z/p/
a •

ß -

r

• l ,

where r' is such that rr' = -1 (mod p ) . Let us write
Yr := Yr/DY. From proposition 2.1 and the fact that
[Y/DY : Yr] =p, we deduce that C(X, Y)T- = C(X», XrY).
We see thus:

Proposition 5.1. The curve Cr = Yr\O is given by the
equation

V =Ur(\- U\

where U = XN, V = XrY.

These are exactly the quotients of the Fermat curve
built in ([!]). We now proceed to build a fundamental
domain and a basis for the homology group of these
curves.

As Y/Yr = (a), the hyperbolic polygon Pr = UfJo'a'tß)
gives a fundamental domain for the curve Cr. This co-
incides with the polygon PA of section 2, but the sides
and vertices of Pr are identified in a different way. One
finds easily that (following the notation of section 2):

2 /+ l~2 / + 2r + 2, i = 0, ...,p - 1,

B0~Bt~ ...£,_„ (3)

C0~C,~ • • • Cp_,.

Corollary 5.2. The genus of the curve Cr is ^~-

Let /TÎ, denote the path on Pr which joins the middle
points of the sides 2/ + 1, 2/ + 2r + 2. The same type of
reasoning applied to the Fermat curve on section 4 gives
now:
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Theorem 5.3.

a) A basis for H\((?r, Z) is {m¡, ..., mp_¡}.

b) The intersection product in //,(¿?., Z) is given by

(mk, mk + i ) = (mk, mk+2) = ••• = (mk, mt + r _ , ) = 1,

(mk, m 4 _, ) = (mk, mk_2) = ••• = (mk, mk_r) = -I,

(m¡, irij) - 0 in any other case.

c) H,(6r, ï) = /[a] (in,).
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